LSST Applications g070148d5b3+33e5256705,g0d53e28543+25c8b88941,g0da5cf3356+2dd1178308,g1081da9e2a+62d12e78cb,g17e5ecfddb+7e422d6136,g1c76d35bf8+ede3a706f7,g295839609d+225697d880,g2e2c1a68ba+cc1f6f037e,g2ffcdf413f+853cd4dcde,g38293774b4+62d12e78cb,g3b44f30a73+d953f1ac34,g48ccf36440+885b902d19,g4b2f1765b6+7dedbde6d2,g5320a0a9f6+0c5d6105b6,g56b687f8c9+ede3a706f7,g5c4744a4d9+ef6ac23297,g5ffd174ac0+0c5d6105b6,g6075d09f38+66af417445,g667d525e37+2ced63db88,g670421136f+2ced63db88,g71f27ac40c+2ced63db88,g774830318a+463cbe8d1f,g7876bc68e5+1d137996f1,g7985c39107+62d12e78cb,g7fdac2220c+0fd8241c05,g96f01af41f+368e6903a7,g9ca82378b8+2ced63db88,g9d27549199+ef6ac23297,gabe93b2c52+e3573e3735,gb065e2a02a+3dfbe639da,gbc3249ced9+0c5d6105b6,gbec6a3398f+0c5d6105b6,gc9534b9d65+35b9f25267,gd01420fc67+0c5d6105b6,geee7ff78d7+a14128c129,gf63283c776+ede3a706f7,gfed783d017+0c5d6105b6,w.2022.47
LSST Data Management Base Package
Loading...
Searching...
No Matches
_leastSquares.cc
Go to the documentation of this file.
1/*
2 * LSST Data Management System
3 * Copyright 2008-2016 AURA/LSST.
4 *
5 * This product includes software developed by the
6 * LSST Project (http://www.lsst.org/).
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the LSST License Statement and
19 * the GNU General Public License along with this program. If not,
20 * see <https://www.lsstcorp.org/LegalNotices/>.
21 */
22
23#include <pybind11/pybind11.h>
24#include <lsst/utils/python.h>
25
26#include "ndarray/pybind11.h"
27
29
30namespace py = pybind11;
31using namespace pybind11::literals;
32
33using namespace lsst::afw::math;
34namespace lsst {
35namespace afw {
36namespace math {
37namespace {
38template <typename T1, typename T2, int C1, int C2>
39void declareLeastSquares(lsst::utils::python::WrapperCollection &wrappers) {
40 auto clsLeastSquares = wrappers.wrapType(
41 py::class_<LeastSquares>(wrappers.module, "LeastSquares"), [](auto &mod, auto &cls) {
42 cls.def_static(
43 "fromDesignMatrix",
44 (LeastSquares(*)(ndarray::Array<T1, 2, C1> const &, ndarray::Array<T2, 1, C2> const &,
45 LeastSquares::Factorization)) &
46 LeastSquares::fromDesignMatrix<T1, T2, C1, C2>,
47 "design"_a, "data"_a, "factorization"_a = LeastSquares::NORMAL_EIGENSYSTEM);
48 cls.def_static(
49 "fromNormalEquations",
50 (LeastSquares(*)(ndarray::Array<T1, 2, C1> const &, ndarray::Array<T2, 1, C2> const &,
51 LeastSquares::Factorization)) &
52 LeastSquares::fromNormalEquations<T1, T2, C1, C2>,
53 "fisher"_a, "rhs"_a, "factorization"_a = LeastSquares::NORMAL_EIGENSYSTEM);
54 cls.def("getRank", &LeastSquares::getRank);
55 cls.def("setDesignMatrix", (void (LeastSquares::*)(ndarray::Array<T1, 2, C1> const &,
56 ndarray::Array<T2, 1, C2> const &)) &
57 LeastSquares::setDesignMatrix<T1, T2, C1, C2>);
58 cls.def("getDimension", &LeastSquares::getDimension);
59 cls.def("setNormalEquations", (void (LeastSquares::*)(ndarray::Array<T1, 2, C1> const &,
60 ndarray::Array<T2, 1, C2> const &)) &
61 LeastSquares::setNormalEquations<T1, T2, C1, C2>);
62 cls.def("getSolution", &LeastSquares::getSolution);
63 cls.def("getFisherMatrix", &LeastSquares::getFisherMatrix);
64 cls.def("getCovariance", &LeastSquares::getCovariance);
65 cls.def("getFactorization", &LeastSquares::getFactorization);
66 cls.def("getDiagnostic", &LeastSquares::getDiagnostic);
67 cls.def("getThreshold", &LeastSquares::getThreshold);
68 cls.def("setThreshold", &LeastSquares::setThreshold);
69 });
70 wrappers.wrapType(py::enum_<LeastSquares::Factorization>(clsLeastSquares, "Factorization"),
71 [](auto &mod, auto &enm) {
72 enm.value("NORMAL_EIGENSYSTEM", LeastSquares::Factorization::NORMAL_EIGENSYSTEM);
73 enm.value("NORMAL_CHOLESKY", LeastSquares::Factorization::NORMAL_CHOLESKY);
74 enm.value("DIRECT_SVD", LeastSquares::Factorization::DIRECT_SVD);
75 enm.export_values();
76 });
77};
78} // namespace
79
80void wrapLeastSquares(lsst::utils::python::WrapperCollection &wrappers) {
81 declareLeastSquares<double, double, 0, 0>(wrappers);
82}
83} // namespace math
84} // namespace afw
85} // namespace lsst
@ NORMAL_EIGENSYSTEM
Use the normal equations with a symmetric Eigensystem decomposition.
Definition: LeastSquares.h:72
@ NORMAL_CHOLESKY
Use the normal equations with a Cholesky decomposition.
Definition: LeastSquares.h:80
@ DIRECT_SVD
Use a thin singular value decomposition of the design matrix.
Definition: LeastSquares.h:88
void wrapLeastSquares(lsst::utils::python::WrapperCollection &wrappers)