LSST Applications g070148d5b3+33e5256705,g0d53e28543+25c8b88941,g0da5cf3356+2dd1178308,g1081da9e2a+62d12e78cb,g17e5ecfddb+7e422d6136,g1c76d35bf8+ede3a706f7,g295839609d+225697d880,g2e2c1a68ba+cc1f6f037e,g2ffcdf413f+853cd4dcde,g38293774b4+62d12e78cb,g3b44f30a73+d953f1ac34,g48ccf36440+885b902d19,g4b2f1765b6+7dedbde6d2,g5320a0a9f6+0c5d6105b6,g56b687f8c9+ede3a706f7,g5c4744a4d9+ef6ac23297,g5ffd174ac0+0c5d6105b6,g6075d09f38+66af417445,g667d525e37+2ced63db88,g670421136f+2ced63db88,g71f27ac40c+2ced63db88,g774830318a+463cbe8d1f,g7876bc68e5+1d137996f1,g7985c39107+62d12e78cb,g7fdac2220c+0fd8241c05,g96f01af41f+368e6903a7,g9ca82378b8+2ced63db88,g9d27549199+ef6ac23297,gabe93b2c52+e3573e3735,gb065e2a02a+3dfbe639da,gbc3249ced9+0c5d6105b6,gbec6a3398f+0c5d6105b6,gc9534b9d65+35b9f25267,gd01420fc67+0c5d6105b6,geee7ff78d7+a14128c129,gf63283c776+ede3a706f7,gfed783d017+0c5d6105b6,w.2022.47
LSST Data Management Base Package
Loading...
Searching...
No Matches
FunctionLibrary.h
Go to the documentation of this file.
1// -*- LSST-C++ -*-
2
3/*
4 * LSST Data Management System
5 * Copyright 2008, 2009, 2010 LSST Corporation.
6 *
7 * This product includes software developed by the
8 * LSST Project (http://www.lsst.org/).
9 *
10 * This program is free software: you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 3 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the LSST License Statement and
21 * the GNU General Public License along with this program. If not,
22 * see <http://www.lsstcorp.org/LegalNotices/>.
23 */
24
25#ifndef LSST_AFW_MATH_FUNCTIONLIBRARY_H
26#define LSST_AFW_MATH_FUNCTIONLIBRARY_H
27/*
28 * Define a collection of useful Functions.
29 */
30#include <algorithm>
31#include <cmath>
32
33#include "lsst/geom.h"
35#include "lsst/geom/Angle.h"
36
37namespace lsst {
38namespace afw {
39namespace math {
40
51template <typename ReturnT>
52class IntegerDeltaFunction1 : public Function1<ReturnT> {
53public:
57 explicit IntegerDeltaFunction1(double xo) : Function1<ReturnT>(0), _xo(xo) {}
58
63 ~IntegerDeltaFunction1() noexcept override = default;
64
65 std::shared_ptr<Function1<ReturnT>> clone() const override {
67 }
68
69 ReturnT operator()(double x) const noexcept(IS_NOTHROW_INIT<ReturnT>) override {
70 return static_cast<ReturnT>(x == _xo);
71 }
72
73 std::string toString(std::string const& prefix = "") const override {
75 os << "IntegerDeltaFunction1 [" << _xo << "]: ";
76 os << Function1<ReturnT>::toString(prefix);
77 return os.str();
78 };
79
80private:
81 double _xo;
82
83protected:
84 /* Default constructor: intended only for serialization */
85 explicit IntegerDeltaFunction1() : Function1<ReturnT>(0), _xo(0.0) {}
86};
87
98template <typename ReturnT>
99class IntegerDeltaFunction2 : public Function2<ReturnT> {
100public:
104 explicit IntegerDeltaFunction2(double xo, double yo) : Function2<ReturnT>(0), _xo(xo), _yo(yo) {}
105
110 ~IntegerDeltaFunction2() noexcept override = default;
111
112 std::shared_ptr<Function2<ReturnT>> clone() const override {
114 }
115
116 ReturnT operator()(double x, double y) const noexcept(IS_NOTHROW_INIT<ReturnT>) override {
117 return static_cast<ReturnT>((x == _xo) && (y == _yo));
118 }
119
120 std::string toString(std::string const& prefix) const override {
122 os << "IntegerDeltaFunction2 [" << _xo << ", " << _yo << "]: ";
123 os << Function2<ReturnT>::toString(prefix);
124 return os.str();
125 }
126
127private:
128 double _xo;
129 double _yo;
130
131protected:
132 /* Default constructor: intended only for serialization */
133 explicit IntegerDeltaFunction2() : Function2<ReturnT>(0), _xo(0.0), _yo(0.0) {}
134};
135
146template <typename ReturnT>
147class GaussianFunction1 : public Function1<ReturnT> {
148public:
152 explicit GaussianFunction1(double sigma)
153 : Function1<ReturnT>(1), _multFac(1.0 / std::sqrt(lsst::geom::TWOPI)) {
154 this->_params[0] = sigma;
155 }
160 ~GaussianFunction1() noexcept override = default;
161
162 std::shared_ptr<Function1<ReturnT>> clone() const override {
164 }
165
166 ReturnT operator()(double x) const noexcept(IS_NOTHROW_INIT<ReturnT>) override {
167 return static_cast<ReturnT>((_multFac / this->_params[0]) *
168 std::exp(-(x * x) / (2.0 * this->_params[0] * this->_params[0])));
169 }
170
171 std::string toString(std::string const& prefix) const override {
173 os << "GaussianFunction1 [" << _multFac << "]: ";
174 os << Function1<ReturnT>::toString(prefix);
175 return os.str();
176 }
177
178private:
179 const double _multFac;
180
181protected:
182 /* Default constructor: intended only for serialization */
183 explicit GaussianFunction1() : Function1<ReturnT>(1), _multFac(1.0 / std::sqrt(lsst::geom::TWOPI)) {}
184};
185
200template <typename ReturnT>
201class GaussianFunction2 : public Function2<ReturnT> {
202public:
206 explicit GaussianFunction2(double sigma1,
207 double sigma2,
208 double angle = 0.0)
209 : Function2<ReturnT>(3), _multFac(1.0 / (lsst::geom::TWOPI)) {
210 this->_params[0] = sigma1;
211 this->_params[1] = sigma2;
212 this->_params[2] = angle;
213 _updateCache();
214 }
215
220 ~GaussianFunction2() noexcept override = default;
221
222 std::shared_ptr<Function2<ReturnT>> clone() const override {
224 new GaussianFunction2(this->_params[0], this->_params[1], this->_params[2]));
225 }
226
227 ReturnT operator()(double x, double y) const noexcept(IS_NOTHROW_INIT<ReturnT>) override {
228 if (_angle != this->_params[2]) {
229 _updateCache();
230 }
231 double pos1 = (_cosAngle * x) + (_sinAngle * y);
232 double pos2 = (-_sinAngle * x) + (_cosAngle * y);
233 return static_cast<ReturnT>((_multFac / (this->_params[0] * this->_params[1])) *
234 std::exp(-((pos1 * pos1) / (2.0 * this->_params[0] * this->_params[0])) -
235 ((pos2 * pos2) / (2.0 * this->_params[1] * this->_params[1]))));
236 }
237
238 std::string toString(std::string const& prefix) const override {
240 os << "GaussianFunction2: ";
241 os << Function2<ReturnT>::toString(prefix);
242 return os.str();
243 }
244
245 bool isPersistable() const noexcept override { return true; }
246
247protected:
248 std::string getPersistenceName() const override;
249
250 void write(afw::table::io::OutputArchiveHandle& handle) const override;
251
252private:
270 void _updateCache() const noexcept {
271 _angle = this->_params[2];
272 _sinAngle = std::sin(_angle);
273 _cosAngle = std::cos(_angle);
274 }
275 const double _multFac;
276 mutable double _angle;
277 mutable double _sinAngle;
278 mutable double _cosAngle;
279
280protected:
281 /* Default constructor: intended only for serialization */
283 : Function2<ReturnT>(3),
284 _multFac(1.0 / (lsst::geom::TWOPI)),
285 _angle(0.0),
286 _sinAngle(0.0),
287 _cosAngle(1.0) {}
288};
289
304template <typename ReturnT>
305class DoubleGaussianFunction2 : public Function2<ReturnT> {
306public:
311 double sigma1,
312 double sigma2 = 0,
313 double ampl2 = 0)
314 : Function2<ReturnT>(3), _multFac(1.0 / (lsst::geom::TWOPI)) {
315 this->_params[0] = sigma1;
316 this->_params[1] = sigma2;
317 this->_params[2] = ampl2;
318 }
319
324 ~DoubleGaussianFunction2() noexcept override = default;
325
326 std::shared_ptr<Function2<ReturnT>> clone() const override {
328 new DoubleGaussianFunction2(this->_params[0], this->_params[1], this->_params[2]));
329 }
330
331 ReturnT operator()(double x, double y) const noexcept(IS_NOTHROW_INIT<ReturnT>) override {
332 double radSq = (x * x) + (y * y);
333 double sigma1Sq = this->_params[0] * this->_params[0];
334 double sigma2Sq = this->_params[1] * this->_params[1];
335 double b = this->_params[2];
336 return static_cast<ReturnT>(
337 (_multFac / (sigma1Sq + (b * sigma2Sq))) *
338 (std::exp(-radSq / (2.0 * sigma1Sq)) + (b * std::exp(-radSq / (2.0 * sigma2Sq)))));
339 }
340
341 std::string toString(std::string const& prefix) const override {
343 os << "DoubleGaussianFunction2 [" << _multFac << "]: ";
344 os << Function2<ReturnT>::toString(prefix);
345 return os.str();
346 }
347
348 bool isPersistable() const noexcept override { return true; }
349
350protected:
351 std::string getPersistenceName() const override;
352
353 void write(afw::table::io::OutputArchiveHandle& handle) const override;
354
355private:
356 const double _multFac;
357
358protected:
359 /* Default constructor: intended only for serialization */
360 explicit DoubleGaussianFunction2() : Function2<ReturnT>(3), _multFac(1.0 / (lsst::geom::TWOPI)) {}
361};
362
370template <typename ReturnT>
371class PolynomialFunction1 : public Function1<ReturnT> {
372public:
378 explicit PolynomialFunction1(unsigned int order)
379 : Function1<ReturnT>(order + 1) {}
380
389 : Function1<ReturnT>(params) {
390 if (params.size() < 1) {
392 "PolynomialFunction1 called with empty vector");
393 }
394 }
395
400 ~PolynomialFunction1() noexcept override = default;
401
402 std::shared_ptr<Function1<ReturnT>> clone() const override {
404 }
405
406 bool isLinearCombination() const noexcept override { return true; };
407
408 ReturnT operator()(double x) const noexcept(IS_NOTHROW_INIT<ReturnT>) override {
409 int const order = static_cast<int>(this->_params.size()) - 1;
410 double retVal = this->_params[order];
411 for (int ii = order - 1; ii >= 0; --ii) {
412 retVal = (retVal * x) + this->_params[ii];
413 }
414 return static_cast<ReturnT>(retVal);
415 }
416
420 unsigned int getOrder() const noexcept { return this->getNParameters() - 1; };
421
422 std::string toString(std::string const& prefix) const override {
424 os << "PolynomialFunction1 []: ";
425 os << Function1<ReturnT>::toString(prefix);
426 return os.str();
427 }
428
429protected:
430 /* Default constructor: intended only for serialization */
431 explicit PolynomialFunction1() : Function1<ReturnT>(1) {}
432};
433
448template <typename ReturnT>
450public:
458 explicit PolynomialFunction2(unsigned int order)
459 : BasePolynomialFunction2<ReturnT>(order), _oldY(0), _xCoeffs(this->_order + 1) {}
460
472 std::vector<double> params)
474 : BasePolynomialFunction2<ReturnT>(params), _oldY(0), _xCoeffs(this->_order + 1) {}
475
480 ~PolynomialFunction2() noexcept override = default;
481
482 std::shared_ptr<Function2<ReturnT>> clone() const override {
484 }
485
486 ReturnT operator()(double x, double y) const noexcept(IS_NOTHROW_INIT<ReturnT>) override {
487 /* Solve as follows:
488 - f(x,y) = Cx0 + Cx1 x + Cx2 x^2 + Cx3 x^3 + ...
489 where:
490 Cx0 = P0 + P2 y + P5 y^2 + P9 y^3 + ...
491 Cx1 = P1 + P4 y + P8 y2 + ...
492 Cx2 = P3 + P7 y + ...
493 Cx3 = P6 + ...
494 ...
495
496 Compute Cx0, Cx1...Cxn by solving 1-d polynomials in y in the usual way.
497 These values are cached and only recomputed for new values of Y or if the parameters change.
498
499 Then compute f(x,y) by solving the 1-d polynomial in x in the usual way.
500 */
501 const int maxXCoeffInd = this->_order;
502
503 if ((y != _oldY) || !this->_isCacheValid) {
504 // update _xCoeffs cache
505 // note: paramInd is decremented in both of the following loops
506 int paramInd = static_cast<int>(this->_params.size()) - 1;
507
508 // initialize _xCoeffs to coeffs for pure y^n; e.g. for 3rd order:
509 // _xCoeffs[0] = _params[9], _xCoeffs[1] = _params[8], ... _xCoeffs[3] = _params[6]
510 for (int xCoeffInd = 0; xCoeffInd <= maxXCoeffInd; ++xCoeffInd, --paramInd) {
511 _xCoeffs[xCoeffInd] = this->_params[paramInd];
512 }
513
514 // finish computing _xCoeffs
515 for (int xCoeffInd = 0, endXCoeffInd = maxXCoeffInd; paramInd >= 0; --paramInd) {
516 _xCoeffs[xCoeffInd] = (_xCoeffs[xCoeffInd] * y) + this->_params[paramInd];
517 ++xCoeffInd;
518 if (xCoeffInd >= endXCoeffInd) {
519 xCoeffInd = 0;
520 --endXCoeffInd;
521 }
522 }
523
524 _oldY = y;
525 this->_isCacheValid = true;
526 }
527
528 // use _xCoeffs to compute result
529 double retVal = _xCoeffs[maxXCoeffInd];
530 for (int xCoeffInd = maxXCoeffInd - 1; xCoeffInd >= 0; --xCoeffInd) {
531 retVal = (retVal * x) + _xCoeffs[xCoeffInd];
532 }
533 return static_cast<ReturnT>(retVal);
534 }
535
540 std::vector<double> getDFuncDParameters(double x, double y) const override;
541
542 std::string toString(std::string const& prefix) const override {
544 os << "PolynomialFunction2 [" << this->_order << "]: ";
545 os << Function2<ReturnT>::toString(prefix);
546 return os.str();
547 }
548
549 bool isPersistable() const noexcept override { return true; }
550
551protected:
552 std::string getPersistenceName() const override;
553
554 void write(afw::table::io::OutputArchiveHandle& handle) const override;
555
556private:
557 mutable double _oldY;
558 mutable std::vector<double> _xCoeffs;
559
560protected:
561 /* Default constructor: intended only for serialization */
562 explicit PolynomialFunction2() : BasePolynomialFunction2<ReturnT>(), _oldY(0), _xCoeffs(0) {}
563};
564
581template <typename ReturnT>
582class Chebyshev1Function1 : public Function1<ReturnT> {
583public:
589 explicit Chebyshev1Function1(unsigned int order,
590 double minX = -1,
591 double maxX = 1)
592 : Function1<ReturnT>(order + 1) {
593 _initialize(minX, maxX);
594 }
595
604 double minX = -1,
605 double maxX = 1)
606 : Function1<ReturnT>(params) {
607 if (params.size() < 1) {
609 "Chebyshev1Function1 called with empty vector");
610 }
611 _initialize(minX, maxX);
612 }
613
618 ~Chebyshev1Function1() noexcept override = default;
619
620 std::shared_ptr<Function1<ReturnT>> clone() const override {
621 return std::shared_ptr<Function1<ReturnT>>(new Chebyshev1Function1(this->_params, _minX, _maxX));
622 }
623
627 double getMinX() const noexcept { return _minX; };
628
632 double getMaxX() const noexcept { return _maxX; };
633
637 unsigned int getOrder() const noexcept { return this->getNParameters() - 1; };
638
639 bool isLinearCombination() const noexcept override { return true; };
640
641 ReturnT operator()(double x) const override {
642 double xPrime = (x + _offset) * _scale;
643
644 // Clenshaw function for solving the Chebyshev polynomial
645 // Non-recursive version from Kresimir Cosic
646 int const order = _order;
647 if (order == 0) {
648 return this->_params[0];
649 } else if (order == 1) {
650 return this->_params[0] + (this->_params[1] * xPrime);
651 }
652 double cshPrev = this->_params[order];
653 double csh = (2 * xPrime * this->_params[order]) + this->_params[order - 1];
654 for (int i = order - 2; i > 0; --i) {
655 double cshNext = (2 * xPrime * csh) + this->_params[i] - cshPrev;
656 cshPrev = csh;
657 csh = cshNext;
658 }
659 return (xPrime * csh) + this->_params[0] - cshPrev;
660 }
661
662 std::string toString(std::string const& prefix) const override {
664 os << "Chebyshev1Function1 [" << _minX << ", " << _maxX << "]: ";
665 os << Function1<ReturnT>::toString(prefix);
666 return os.str();
667 }
668
669private:
670 double _minX;
671 double _maxX;
672 double _scale;
673 double _offset;
674 unsigned int _order;
675
679 void _initialize(double minX, double maxX) {
680 _minX = minX;
681 _maxX = maxX;
682 _scale = 2.0 / (_maxX - _minX);
683 _offset = -(_minX + _maxX) * 0.5;
684 _order = this->getNParameters() - 1;
685 }
686
687protected:
688 /* Default constructor: intended only for serialization */
690 : Function1<ReturnT>(1), _minX(0.0), _maxX(0.0), _scale(1.0), _offset(0.0), _order(0) {}
691};
692
718template <typename ReturnT>
720public:
726 explicit Chebyshev1Function2(unsigned int order,
727 lsst::geom::Box2D const& xyRange = lsst::geom::Box2D(
728 lsst::geom::Point2D(-1.0, -1.0),
729 lsst::geom::Point2D(1.0, 1.0)))
730 : BasePolynomialFunction2<ReturnT>(order),
731 _oldYPrime(0),
732 _yCheby(this->_order + 1),
733 _xCoeffs(this->_order + 1) {
734 _initialize(xyRange);
735 }
736
746 lsst::geom::Box2D const& xyRange = lsst::geom::Box2D(
747 lsst::geom::Point2D(-1.0, -1.0),
748 lsst::geom::Point2D(1.0, 1.0)))
749 : BasePolynomialFunction2<ReturnT>(params),
750 _oldYPrime(0),
751 _yCheby(this->_order + 1),
752 _xCoeffs(this->_order + 1) {
753 _initialize(xyRange);
754 }
755
760 ~Chebyshev1Function2() noexcept override = default;
761
762 std::shared_ptr<Function2<ReturnT>> clone() const override {
764 new Chebyshev1Function2(this->_params, this->getXYRange()));
765 }
766
770 lsst::geom::Box2D getXYRange() const noexcept {
771 return lsst::geom::Box2D(lsst::geom::Point2D(_minX, _minY), lsst::geom::Point2D(_maxX, _maxY));
772 };
773
779 virtual Chebyshev1Function2 truncate(int truncOrder
780 ) const {
781 if (truncOrder > this->_order) {
783 os << "truncated order=" << truncOrder << " must be <= original order=" << this->_order;
785 }
786 int truncNParams = this->nParametersFromOrder(truncOrder);
787 std::vector<double> truncParams(this->_params.begin(), this->_params.begin() + truncNParams);
788 return Chebyshev1Function2(truncParams, this->getXYRange());
789 }
790
791 ReturnT operator()(double x, double y) const override {
792 /* Solve as follows:
793 - f(x,y) = Cy0 T0(y') + Cy1 T1(y') + Cy2 T2(y') + Cy3 T3(y') + ...
794 where:
795 Cy0 = P0 T0(x') + P1 T1(x') + P3 T2(x') + P6 T3(x') + ...
796 Cy1 = P2 T0(x') + P4 T1(x') + P7 T2(x') + ...
797 Cy2 = P5 T0(x') + P8 T1(x') + ...
798 Cy3 = P9 T0(x') + ...
799 ...
800
801 First compute Tn(x') for each n
802 Then use that to compute Cy0, Cy1, ...Cyn
803 Then solve the y Chebyshev polynomial using the Clenshaw algorithm
804 */
805 double const xPrime = (x + _offsetX) * _scaleX;
806 double const yPrime = (y + _offsetY) * _scaleY;
807
808 const int nParams = static_cast<int>(this->_params.size());
809 const int order = this->_order;
810
811 if (order == 0) {
812 return this->_params[0]; // No caching required
813 }
814
815 if ((yPrime != _oldYPrime) || !this->_isCacheValid) {
816 // update cached _yCheby and _xCoeffs
817 _yCheby[0] = 1.0;
818 _yCheby[1] = yPrime;
819 for (int chebyInd = 2; chebyInd <= order; chebyInd++) {
820 _yCheby[chebyInd] = (2 * yPrime * _yCheby[chebyInd - 1]) - _yCheby[chebyInd - 2];
821 }
822
823 for (int coeffInd = 0; coeffInd <= order; coeffInd++) {
824 _xCoeffs[coeffInd] = 0;
825 }
826 for (int coeffInd = 0, endCoeffInd = 0, paramInd = 0; paramInd < nParams; paramInd++) {
827 _xCoeffs[coeffInd] += this->_params[paramInd] * _yCheby[endCoeffInd];
828 --coeffInd;
829 ++endCoeffInd;
830 if (coeffInd < 0) {
831 coeffInd = endCoeffInd;
832 endCoeffInd = 0;
833 }
834 }
835
836 _oldYPrime = yPrime;
837 this->_isCacheValid = true;
838 }
839
840 // Clenshaw function for solving the Chebyshev polynomial
841 // Non-recursive version from Kresimir Cosic
842 if (order == 1) {
843 return _xCoeffs[0] + (_xCoeffs[1] * xPrime);
844 }
845 double cshPrev = _xCoeffs[order];
846 double csh = (2 * xPrime * _xCoeffs[order]) + _xCoeffs[order - 1];
847 for (int i = order - 2; i > 0; --i) {
848 double cshNext = (2 * xPrime * csh) + _xCoeffs[i] - cshPrev;
849 cshPrev = csh;
850 csh = cshNext;
851 }
852 return (xPrime * csh) + _xCoeffs[0] - cshPrev;
853 }
854
855 std::string toString(std::string const& prefix) const override {
857 os << "Chebyshev1Function2 [";
858 os << this->_order << ", " << this->getXYRange() << "]";
859 os << Function2<ReturnT>::toString(prefix);
860 return os.str();
861 }
862
863 bool isPersistable() const noexcept override { return true; }
864
865protected:
866 std::string getPersistenceName() const override;
867
868 void write(afw::table::io::OutputArchiveHandle& handle) const override;
869
870private:
871 mutable double _oldYPrime;
872 mutable std::vector<double> _yCheby;
873 mutable std::vector<double> _xCoeffs;
874 double _minX;
875 double _minY;
876 double _maxX;
877 double _maxY;
878 double _scaleX;
879 double _scaleY;
880 double _offsetX;
881 double _offsetY;
882
886 void _initialize(lsst::geom::Box2D const& xyRange) {
887 _minX = xyRange.getMinX();
888 _minY = xyRange.getMinY();
889 _maxX = xyRange.getMaxX();
890 _maxY = xyRange.getMaxY();
891 _scaleX = 2.0 / (_maxX - _minX);
892 _scaleY = 2.0 / (_maxY - _minY);
893 _offsetX = -(_minX + _maxX) * 0.5;
894 _offsetY = -(_minY + _maxY) * 0.5;
895 }
896
897protected:
898 /* Default constructor: intended only for serialization */
900 : BasePolynomialFunction2<ReturnT>(),
901 _oldYPrime(0),
902 _yCheby(0),
903 _xCoeffs(0),
904 _minX(0.0),
905 _minY(0.0),
906 _maxX(0.0),
907 _maxY(0.0),
908 _scaleX(1.0),
909 _scaleY(1.0),
910 _offsetX(0.0),
911 _offsetY(0.0) {}
912};
913
926template <typename ReturnT>
927class LanczosFunction1 : public Function1<ReturnT> {
928public:
932 explicit LanczosFunction1(unsigned int n,
933 double xOffset = 0.0)
934 : Function1<ReturnT>(1), _invN(1.0 / static_cast<double>(n)) {
935 this->_params[0] = xOffset;
936 }
937
942 ~LanczosFunction1() noexcept override = default;
943
944 std::shared_ptr<Function1<ReturnT>> clone() const override {
946 }
947
948 ReturnT operator()(double x) const noexcept(IS_NOTHROW_INIT<ReturnT>) override {
949 double xArg1 = (x - this->_params[0]) * lsst::geom::PI;
950 double xArg2 = xArg1 * _invN;
951 if (std::fabs(xArg1) > 1.0e-5) {
952 return static_cast<ReturnT>(std::sin(xArg1) * std::sin(xArg2) / (xArg1 * xArg2));
953 } else {
954 return static_cast<ReturnT>(1);
955 }
956 }
957
961 unsigned int getOrder() const noexcept { return static_cast<unsigned int>(0.5 + (1.0 / _invN)); };
962
963 std::string toString(std::string const& prefix) const override {
965 os << "LanczosFunction1 [" << this->getOrder() << "]: ";
966 ;
967 os << Function1<ReturnT>::toString(prefix);
968 return os.str();
969 }
970
971private:
972 double _invN; // == 1/n
973
974protected:
975 /* Default constructor: intended only for serialization */
976 explicit LanczosFunction1() : Function1<ReturnT>(1), _invN(1.0) {}
977};
978
991template <typename ReturnT>
992class LanczosFunction2 : public Function2<ReturnT> {
993public:
997 explicit LanczosFunction2(unsigned int n,
998 double xOffset = 0.0,
999 double yOffset = 0.0)
1000 : Function2<ReturnT>(2), _invN(1.0 / static_cast<double>(n)) {
1001 this->_params[0] = xOffset;
1002 this->_params[1] = yOffset;
1003 }
1004
1009 ~LanczosFunction2() noexcept override = default;
1010
1011 std::shared_ptr<Function2<ReturnT>> clone() const override {
1013 new LanczosFunction2(this->getOrder(), this->_params[0], this->_params[1]));
1014 }
1015
1016 ReturnT operator()(double x, double y) const noexcept(IS_NOTHROW_INIT<ReturnT>) override {
1017 double xArg1 = (x - this->_params[0]) * lsst::geom::PI;
1018 double xArg2 = xArg1 * _invN;
1019 double xFunc = 1;
1020 if (std::fabs(xArg1) > 1.0e-5) {
1021 xFunc = std::sin(xArg1) * std::sin(xArg2) / (xArg1 * xArg2);
1022 }
1023 double yArg1 = (y - this->_params[1]) * lsst::geom::PI;
1024 double yArg2 = yArg1 * _invN;
1025 double yFunc = 1;
1026 if (std::fabs(yArg1) > 1.0e-5) {
1027 yFunc = std::sin(yArg1) * std::sin(yArg2) / (yArg1 * yArg2);
1028 }
1029 return static_cast<ReturnT>(xFunc * yFunc);
1030 }
1031
1035 unsigned int getOrder() const noexcept { return static_cast<unsigned int>(0.5 + (1.0 / _invN)); };
1036
1037 std::string toString(std::string const& prefix) const override {
1039 os << "LanczosFunction2 [" << this->getOrder() << "]: ";
1040 ;
1041 os << Function2<ReturnT>::toString(prefix);
1042 return os.str();
1043 }
1044
1045private:
1046 double _invN;
1047
1048protected:
1049 /* Default constructor: intended only for serialization */
1050 explicit LanczosFunction2() : Function2<ReturnT>(2), _invN(1.0) {}
1051};
1052} // namespace math
1053} // namespace afw
1054} // namespace lsst
1055
1056#endif // #ifndef LSST_AFW_MATH_FUNCTIONLIBRARY_H
double x
#define LSST_EXCEPT(type,...)
Create an exception with a given type.
Definition: Exception.h:48
table::Key< double > angle
table::Key< double > ampl2
table::Key< double > sigma2
table::Key< double > sigma1
afw::table::Key< double > sigma
Definition: GaussianPsf.cc:49
std::ostream * os
Definition: Schema.cc:557
std::string prefix
Definition: SchemaMapper.cc:72
int y
Definition: SpanSet.cc:48
table::Key< int > b
T begin(T... args)
Base class for 2-dimensional polynomials of the form:
Definition: Function.h:326
static int nParametersFromOrder(int order)
Compute number of parameters from polynomial order.
Definition: Function.h:369
1-dimensional weighted sum of Chebyshev polynomials of the first kind.
double getMinX() const noexcept
Get minimum allowed x.
Chebyshev1Function1(std::vector< double > params, double minX=-1, double maxX=1)
Construct a Chebyshev polynomial with specified parameters and range.
std::shared_ptr< Function1< ReturnT > > clone() const override
Return a pointer to a deep copy of this function.
unsigned int getOrder() const noexcept
Get the polynomial order.
bool isLinearCombination() const noexcept override
Is the function a linear combination of its parameters?
Chebyshev1Function1(Chebyshev1Function1 const &)=default
Chebyshev1Function1(Chebyshev1Function1 &&)=default
Chebyshev1Function1 & operator=(Chebyshev1Function1 &&)=default
ReturnT operator()(double x) const override
Chebyshev1Function1(unsigned int order, double minX=-1, double maxX=1)
Construct a Chebyshev polynomial of specified order and range.
double getMaxX() const noexcept
Get maximum allowed x.
~Chebyshev1Function1() noexcept override=default
Chebyshev1Function1 & operator=(Chebyshev1Function1 const &)=default
std::string toString(std::string const &prefix) const override
Return a string representation of the function.
2-dimensional weighted sum of Chebyshev polynomials of the first kind.
std::string toString(std::string const &prefix) const override
Return a string representation of the function.
ReturnT operator()(double x, double y) const override
bool isPersistable() const noexcept override
Return true if this particular object can be persisted using afw::table::io.
Chebyshev1Function2(unsigned int order, lsst::geom::Box2D const &xyRange=lsst::geom::Box2D(lsst::geom::Point2D(-1.0, -1.0), lsst::geom::Point2D(1.0, 1.0)))
Construct a Chebyshev polynomial of specified order and range.
Chebyshev1Function2(Chebyshev1Function2 const &)=default
std::shared_ptr< Function2< ReturnT > > clone() const override
Return a pointer to a deep copy of this function.
~Chebyshev1Function2() noexcept override=default
lsst::geom::Box2D getXYRange() const noexcept
Get x,y range.
std::string getPersistenceName() const override
Return the unique name used to persist this object and look up its factory.
virtual Chebyshev1Function2 truncate(int truncOrder) const
Return a truncated copy of lower (or equal) order.
void write(afw::table::io::OutputArchiveHandle &handle) const override
Write the object to one or more catalogs.
Chebyshev1Function2(Chebyshev1Function2 &&)=default
Chebyshev1Function2 & operator=(Chebyshev1Function2 const &)=default
Chebyshev1Function2 & operator=(Chebyshev1Function2 &&)=default
Chebyshev1Function2(std::vector< double > params, lsst::geom::Box2D const &xyRange=lsst::geom::Box2D(lsst::geom::Point2D(-1.0, -1.0), lsst::geom::Point2D(1.0, 1.0)))
Construct a Chebyshev polynomial with specified parameters and range.
double Guassian (sum of two Gaussians)
void write(afw::table::io::OutputArchiveHandle &handle) const override
Write the object to one or more catalogs.
~DoubleGaussianFunction2() noexcept override=default
DoubleGaussianFunction2 & operator=(DoubleGaussianFunction2 const &)=default
DoubleGaussianFunction2(double sigma1, double sigma2=0, double ampl2=0)
Construct a Gaussian function with specified x and y sigma.
DoubleGaussianFunction2(DoubleGaussianFunction2 &&)=default
DoubleGaussianFunction2(DoubleGaussianFunction2 const &)=default
std::string toString(std::string const &prefix) const override
Return a string representation of the function.
std::shared_ptr< Function2< ReturnT > > clone() const override
Return a pointer to a deep copy of this function.
bool isPersistable() const noexcept override
Return true if this particular object can be persisted using afw::table::io.
ReturnT operator()(double x, double y) const noexcept(IS_NOTHROW_INIT< ReturnT >) override
DoubleGaussianFunction2 & operator=(DoubleGaussianFunction2 &&)=default
std::string getPersistenceName() const override
Return the unique name used to persist this object and look up its factory.
A Function taking one argument.
Definition: Function.h:202
A Function taking two arguments.
Definition: Function.h:259
std::vector< double > _params
Definition: Function.h:185
unsigned int getNParameters() const noexcept
Return the number of function parameters.
Definition: Function.h:112
~GaussianFunction1() noexcept override=default
std::shared_ptr< Function1< ReturnT > > clone() const override
Return a pointer to a deep copy of this function.
GaussianFunction1 & operator=(GaussianFunction1 &&)=default
GaussianFunction1(GaussianFunction1 &&)=default
std::string toString(std::string const &prefix) const override
Return a string representation of the function.
GaussianFunction1(GaussianFunction1 const &)=default
GaussianFunction1 & operator=(GaussianFunction1 const &)=default
GaussianFunction1(double sigma)
Construct a Gaussian function with specified sigma.
ReturnT operator()(double x) const noexcept(IS_NOTHROW_INIT< ReturnT >) override
GaussianFunction2(double sigma1, double sigma2, double angle=0.0)
Construct a 2-dimensional Gaussian function.
GaussianFunction2(GaussianFunction2 &&)=default
GaussianFunction2(GaussianFunction2 const &)=default
std::string toString(std::string const &prefix) const override
Return a string representation of the function.
~GaussianFunction2() noexcept override=default
void write(afw::table::io::OutputArchiveHandle &handle) const override
Write the object to one or more catalogs.
GaussianFunction2 & operator=(GaussianFunction2 &&)=default
GaussianFunction2 & operator=(GaussianFunction2 const &)=default
std::shared_ptr< Function2< ReturnT > > clone() const override
Return a pointer to a deep copy of this function.
ReturnT operator()(double x, double y) const noexcept(IS_NOTHROW_INIT< ReturnT >) override
std::string getPersistenceName() const override
Return the unique name used to persist this object and look up its factory.
bool isPersistable() const noexcept override
Return true if this particular object can be persisted using afw::table::io.
1-dimensional integer delta function.
~IntegerDeltaFunction1() noexcept override=default
IntegerDeltaFunction1(IntegerDeltaFunction1 const &)=default
ReturnT operator()(double x) const noexcept(IS_NOTHROW_INIT< ReturnT >) override
IntegerDeltaFunction1(double xo)
Construct an integer delta function with specified xo.
IntegerDeltaFunction1 & operator=(IntegerDeltaFunction1 &&)=default
IntegerDeltaFunction1(IntegerDeltaFunction1 &&)=default
std::string toString(std::string const &prefix="") const override
Return a string representation of the function.
std::shared_ptr< Function1< ReturnT > > clone() const override
Return a pointer to a deep copy of this function.
IntegerDeltaFunction1 & operator=(IntegerDeltaFunction1 const &)=default
2-dimensional integer delta function.
IntegerDeltaFunction2 & operator=(IntegerDeltaFunction2 &&)=default
std::string toString(std::string const &prefix) const override
Return a string representation of the function.
IntegerDeltaFunction2(IntegerDeltaFunction2 const &)=default
ReturnT operator()(double x, double y) const noexcept(IS_NOTHROW_INIT< ReturnT >) override
IntegerDeltaFunction2 & operator=(IntegerDeltaFunction2 const &)=default
~IntegerDeltaFunction2() noexcept override=default
IntegerDeltaFunction2(double xo, double yo)
Construct an integer delta function with specified xo, yo.
std::shared_ptr< Function2< ReturnT > > clone() const override
Return a pointer to a deep copy of this function.
IntegerDeltaFunction2(IntegerDeltaFunction2 &&)=default
1-dimensional Lanczos function
LanczosFunction1(unsigned int n, double xOffset=0.0)
Construct a Lanczos function of specified order and x,y offset.
std::shared_ptr< Function1< ReturnT > > clone() const override
Return a pointer to a deep copy of this function.
LanczosFunction1 & operator=(LanczosFunction1 &&)=default
~LanczosFunction1() noexcept override=default
LanczosFunction1 & operator=(LanczosFunction1 const &)=default
LanczosFunction1(LanczosFunction1 &&)=default
LanczosFunction1(LanczosFunction1 const &)=default
ReturnT operator()(double x) const noexcept(IS_NOTHROW_INIT< ReturnT >) override
unsigned int getOrder() const noexcept
Get the order of the Lanczos function.
std::string toString(std::string const &prefix) const override
Return a string representation of the function.
2-dimensional separable Lanczos function
~LanczosFunction2() noexcept override=default
LanczosFunction2(LanczosFunction2 &&)=default
LanczosFunction2(LanczosFunction2 const &)=default
LanczosFunction2(unsigned int n, double xOffset=0.0, double yOffset=0.0)
Construct a Lanczos function of specified order and x,y offset.
ReturnT operator()(double x, double y) const noexcept(IS_NOTHROW_INIT< ReturnT >) override
LanczosFunction2 & operator=(LanczosFunction2 const &)=default
unsigned int getOrder() const noexcept
Get the order of Lanczos function.
LanczosFunction2 & operator=(LanczosFunction2 &&)=default
std::string toString(std::string const &prefix) const override
Return a string representation of the function.
std::shared_ptr< Function2< ReturnT > > clone() const override
Return a pointer to a deep copy of this function.
1-dimensional polynomial function.
unsigned int getOrder() const noexcept
Get the polynomial order.
std::string toString(std::string const &prefix) const override
Return a string representation of the function.
bool isLinearCombination() const noexcept override
Is the function a linear combination of its parameters?
PolynomialFunction1 & operator=(PolynomialFunction1 &&)=default
PolynomialFunction1(std::vector< double > params)
Construct a polynomial function with the specified parameters.
PolynomialFunction1 & operator=(PolynomialFunction1 const &)=default
PolynomialFunction1(PolynomialFunction1 &&)=default
PolynomialFunction1(unsigned int order)
Construct a polynomial function of the specified order.
PolynomialFunction1(PolynomialFunction1 const &)=default
ReturnT operator()(double x) const noexcept(IS_NOTHROW_INIT< ReturnT >) override
~PolynomialFunction1() noexcept override=default
std::shared_ptr< Function1< ReturnT > > clone() const override
Return a pointer to a deep copy of this function.
2-dimensional polynomial function with cross terms
PolynomialFunction2(std::vector< double > params)
Construct a polynomial function with specified parameters.
PolynomialFunction2 & operator=(PolynomialFunction2 const &)=default
PolynomialFunction2 & operator=(PolynomialFunction2 &&)=default
std::shared_ptr< Function2< ReturnT > > clone() const override
Return a pointer to a deep copy of this function.
PolynomialFunction2(unsigned int order)
Construct a polynomial function of specified order.
std::string toString(std::string const &prefix) const override
Return a string representation of the function.
PolynomialFunction2(PolynomialFunction2 const &)=default
~PolynomialFunction2() noexcept override=default
std::vector< double > getDFuncDParameters(double x, double y) const override
Return the coefficients of the Function's parameters, evaluated at (x, y) I.e.
Definition: Function.cc:34
bool isPersistable() const noexcept override
Return true if this particular object can be persisted using afw::table::io.
std::string getPersistenceName() const override
Return the unique name used to persist this object and look up its factory.
ReturnT operator()(double x, double y) const noexcept(IS_NOTHROW_INIT< ReturnT >) override
PolynomialFunction2(PolynomialFunction2 &&)=default
void write(afw::table::io::OutputArchiveHandle &handle) const override
Write the object to one or more catalogs.
An object passed to Persistable::write to allow it to persist itself.
A floating-point coordinate rectangle geometry.
Definition: Box.h:413
double getMaxY() const noexcept
Definition: Box.h:519
double getMaxX() const noexcept
Definition: Box.h:518
double getMinY() const noexcept
Definition: Box.h:515
double getMinX() const noexcept
Definition: Box.h:514
Reports invalid arguments.
Definition: Runtime.h:66
T cos(T... args)
T exp(T... args)
T fabs(T... args)
double constexpr PI
The ratio of a circle's circumference to diameter.
Definition: Angle.h:40
STL namespace.
T sin(T... args)
T size(T... args)
table::Key< int > order