LSST Applications g070148d5b3+33e5256705,g0d53e28543+25c8b88941,g0da5cf3356+2dd1178308,g1081da9e2a+62d12e78cb,g17e5ecfddb+7e422d6136,g1c76d35bf8+ede3a706f7,g295839609d+225697d880,g2e2c1a68ba+cc1f6f037e,g2ffcdf413f+853cd4dcde,g38293774b4+62d12e78cb,g3b44f30a73+d953f1ac34,g48ccf36440+885b902d19,g4b2f1765b6+7dedbde6d2,g5320a0a9f6+0c5d6105b6,g56b687f8c9+ede3a706f7,g5c4744a4d9+ef6ac23297,g5ffd174ac0+0c5d6105b6,g6075d09f38+66af417445,g667d525e37+2ced63db88,g670421136f+2ced63db88,g71f27ac40c+2ced63db88,g774830318a+463cbe8d1f,g7876bc68e5+1d137996f1,g7985c39107+62d12e78cb,g7fdac2220c+0fd8241c05,g96f01af41f+368e6903a7,g9ca82378b8+2ced63db88,g9d27549199+ef6ac23297,gabe93b2c52+e3573e3735,gb065e2a02a+3dfbe639da,gbc3249ced9+0c5d6105b6,gbec6a3398f+0c5d6105b6,gc9534b9d65+35b9f25267,gd01420fc67+0c5d6105b6,geee7ff78d7+a14128c129,gf63283c776+ede3a706f7,gfed783d017+0c5d6105b6,w.2022.47
LSST Data Management Base Package
Loading...
Searching...
No Matches
Prior.h
Go to the documentation of this file.
1// -*- lsst-c++ -*-
2/*
3 * LSST Data Management System
4 * Copyright 2008-2013 LSST Corporation.
5 *
6 * This product includes software developed by the
7 * LSST Project (http://www.lsst.org/).
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the LSST License Statement and
20 * the GNU General Public License along with this program. If not,
21 * see <http://www.lsstcorp.org/LegalNotices/>.
22 */
23
24#ifndef LSST_MEAS_MODELFIT_Prior_h_INCLUDED
25#define LSST_MEAS_MODELFIT_Prior_h_INCLUDED
26
27#include "lsst/base.h"
30
31namespace lsst { namespace meas { namespace modelfit {
32
36class Prior {
37public:
38
39 std::string const & getTag() const { return _tag; }
40
48 ndarray::Array<Scalar const,1,1> const & nonlinear,
49 ndarray::Array<Scalar const,1,1> const & amplitudes
50 ) const = 0;
51
67 virtual void evaluateDerivatives(
68 ndarray::Array<Scalar const,1,1> const & nonlinear,
69 ndarray::Array<Scalar const,1,1> const & amplitudes,
70 ndarray::Array<Scalar,1,1> const & nonlinearGradient,
71 ndarray::Array<Scalar,1,1> const & amplitudeGradient,
72 ndarray::Array<Scalar,2,1> const & nonlinearHessian,
73 ndarray::Array<Scalar,2,1> const & amplitudeHessian,
74 ndarray::Array<Scalar,2,1> const & crossHessian
75 ) const = 0;
76
111 Vector const & gradient, Matrix const & hessian,
112 ndarray::Array<Scalar const,1,1> const & nonlinear
113 ) const = 0;
114
128 Vector const & gradient, Matrix const & hessian,
129 ndarray::Array<Scalar const,1,1> const & nonlinear,
130 ndarray::Array<Scalar,1,1> const & amplitudes
131 ) const = 0;
132
152 virtual void drawAmplitudes(
153 Vector const & gradient, Matrix const & hessian,
154 ndarray::Array<Scalar const,1,1> const & nonlinear,
155 afw::math::Random & rng,
156 ndarray::Array<Scalar,2,1> const & amplitudes,
157 ndarray::Array<Scalar,1,1> const & weights,
158 bool multiplyWeights=false
159 ) const = 0;
160
161 virtual ~Prior() {}
162
163 // No copying
164 Prior (const Prior&) = delete;
165 Prior& operator=(const Prior&) = delete;
166
167 // No moving
168 Prior (Prior&&) = delete;
169 Prior& operator=(Prior&&) = delete;
170
171protected:
172
173 explicit Prior(std::string const & tag="") : _tag(tag) {}
174
175private:
176 std::string _tag;
177};
178
179}}} // namespace lsst::meas::modelfit
180
181#endif // !LSST_MEAS_MODELFIT_Prior_h_INCLUDED
table::Key< table::Array< double > > amplitudes
Basic LSST definitions.
A class that can be used to generate sequences of random numbers according to a number of different a...
Definition: Random.h:57
Base class for Bayesian priors.
Definition: Prior.h:36
virtual Scalar marginalize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear) const =0
Return the -log amplitude integral of the prior*likelihood product.
virtual Scalar maximize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar, 1, 1 > const &amplitudes) const =0
Compute the amplitude vector that maximizes the prior x likelihood product.
Prior & operator=(Prior &&)=delete
virtual Scalar evaluate(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes) const =0
Evaluate the prior at the given point in nonlinear and amplitude space.
Prior & operator=(const Prior &)=delete
std::string const & getTag() const
Definition: Prior.h:39
virtual void drawAmplitudes(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, afw::math::Random &rng, ndarray::Array< Scalar, 2, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &weights, bool multiplyWeights=false) const =0
Draw a set of Monte Carlo amplitude vectors.
virtual void evaluateDerivatives(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &nonlinearGradient, ndarray::Array< Scalar, 1, 1 > const &amplitudeGradient, ndarray::Array< Scalar, 2, 1 > const &nonlinearHessian, ndarray::Array< Scalar, 2, 1 > const &amplitudeHessian, ndarray::Array< Scalar, 2, 1 > const &crossHessian) const =0
Evaluate the derivatives of the prior at the given point in nonlinear and amplitude space.
Prior(const Prior &)=delete
Prior(std::string const &tag="")
Definition: Prior.h:173
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
Definition: common.h:46
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > Matrix
Definition: common.h:45
double Scalar
Typedefs to be used for probability and parameter values.
Definition: common.h:44