LSST Applications g070148d5b3+33e5256705,g0d53e28543+25c8b88941,g0da5cf3356+2dd1178308,g1081da9e2a+62d12e78cb,g17e5ecfddb+7e422d6136,g1c76d35bf8+ede3a706f7,g295839609d+225697d880,g2e2c1a68ba+cc1f6f037e,g2ffcdf413f+853cd4dcde,g38293774b4+62d12e78cb,g3b44f30a73+d953f1ac34,g48ccf36440+885b902d19,g4b2f1765b6+7dedbde6d2,g5320a0a9f6+0c5d6105b6,g56b687f8c9+ede3a706f7,g5c4744a4d9+ef6ac23297,g5ffd174ac0+0c5d6105b6,g6075d09f38+66af417445,g667d525e37+2ced63db88,g670421136f+2ced63db88,g71f27ac40c+2ced63db88,g774830318a+463cbe8d1f,g7876bc68e5+1d137996f1,g7985c39107+62d12e78cb,g7fdac2220c+0fd8241c05,g96f01af41f+368e6903a7,g9ca82378b8+2ced63db88,g9d27549199+ef6ac23297,gabe93b2c52+e3573e3735,gb065e2a02a+3dfbe639da,gbc3249ced9+0c5d6105b6,gbec6a3398f+0c5d6105b6,gc9534b9d65+35b9f25267,gd01420fc67+0c5d6105b6,geee7ff78d7+a14128c129,gf63283c776+ede3a706f7,gfed783d017+0c5d6105b6,w.2022.47
LSST Data Management Base Package
Loading...
Searching...
No Matches
RecurrenceBasis1d.h
Go to the documentation of this file.
1// -*- LSST-C++ -*-
2/*
3 * Developed for the LSST Data Management System.
4 * This product includes software developed by the LSST Project
5 * (https://www.lsst.org).
6 * See the COPYRIGHT file at the top-level directory of this distribution
7 * for details of code ownership.
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <https://www.gnu.org/licenses/>.
21 */
22#ifndef LSST_AFW_MATH_POLYNOMIALS_RecurrenceBasis1d_h_INCLUDED
23#define LSST_AFW_MATH_POLYNOMIALS_RecurrenceBasis1d_h_INCLUDED
24
27
28namespace lsst { namespace geom { namespace polynomials {
29
30template <typename Basis>
31class Function1d;
32
33#ifdef DOXYGEN
34
43struct Recurrence {
44
46 static double getB0(double x);
47
49 static double getB1(double x);
50
61 static double next(double x, std::size_t n, double current, double previous);
62
63};
64
65#endif // DOXYGEN
66
67
84template <typename Recurrence>
86public:
87
90
93
95 explicit RecurrenceBasis1d(std::size_t order) noexcept :
96 _order(order)
97 {}
98
101
104
107
110
112 std::size_t getOrder() const noexcept { return _order; }
113
115 std::size_t size() const noexcept { return _order + 1; }
116
123 Scaled scaled(Scaling1d const & scaling) const noexcept {
124 return Scaled(*this, scaling);
125 }
126
145 template <typename Vector>
146 double sumWith(double x, Vector const & coefficients, SumMode mode=SumMode::FAST) const {
147 // This universal lambda lets us effectively template most of the
148 // implementation of this function on double vs. SafeSum<double>
149 // without having to define an external template.
150 auto accumulate = [x, coefficients, this](auto & sum) {
151 double previous = Recurrence::getB0(x);
152 if (_order > 0u) {
153 double current = Recurrence::getB1(x);
154 sum += coefficients[1]*current;
155 for (std::size_t n = 2; n <= _order; ++n) {
156 double next = Recurrence::next(x, n, current, previous);
157 sum += coefficients[n]*next;
158 previous = current;
159 current = next;
160 }
161 }
162 };
163 double result = 0.0;
164 if (mode == SumMode::FAST) {
165 double z = Recurrence::getB0(x)*coefficients[0];
166 accumulate(z);
167 result = z;
168 } else {
170 accumulate(z);
171 result = static_cast<double>(z);
172 }
173 return result;
174 }
175
186 template <typename Vector>
187 void fill(double x, Vector && basis) const {
188 std::forward<Vector>(basis)[0] = Recurrence::getB0(x);
189 if (_order > 0u) {
190 std::forward<Vector>(basis)[1] = Recurrence::getB1(x);
191 for (std::size_t n = 2; n <= _order; ++n) {
192 std::forward<Vector>(basis)[n] = Recurrence::next(
193 x, n,
194 std::forward<Vector>(basis)[n - 1],
195 std::forward<Vector>(basis)[n - 2]
196 );
197 }
198 }
199 }
200
201private:
202 std::size_t _order;
203};
204
205}}} // namespace lsst::geom::polynomials
206
207#endif // !LSST_AFW_MATH_POLYNOMIALS_RecurrenceBasis1d_h_INCLUDED
py::object result
Definition: _schema.cc:429
ndarray::Array< double const, 2, 2 > coefficients
double x
double z
Definition: Match.cc:44
table::Key< double > scaling
A 1-d function defined by a series expansion and its coefficients.
Definition: Function1d.h:42
A basis for 1-d series expansions defined by a recurrence relation.
RecurrenceBasis1d & operator=(RecurrenceBasis1d &&)=default
Default move assignment.
RecurrenceBasis1d(RecurrenceBasis1d const &)=default
Default copy constructor.
RecurrenceBasis1d & operator=(RecurrenceBasis1d const &)=default
Default copy assignment.
RecurrenceBasis1d(std::size_t order) noexcept
Construct a basis with the given order (inclusive).
void fill(double x, Vector &&basis) const
Evaluate the basis at a given point.
Scaled scaled(Scaling1d const &scaling) const noexcept
Return a scaled basis with the same order and recurrence.
double sumWith(double x, Vector const &coefficients, SumMode mode=SumMode::FAST) const
Evaluate a basis expansion with the given coefficients.
RecurrenceBasis1d(RecurrenceBasis1d &&)=default
Default move constructor.
std::size_t getOrder() const noexcept
Return the order of the basis.
std::size_t size() const noexcept
Return the number of elements in the basis.
ScaledBasis1d< RecurrenceBasis1d > Scaled
The type returned by scale().
A numerically stable summation algorithm for floating-point numbers.
Definition: SafeSum.h:62
A 1-d basis that transforms all input points before evaluating nested basis.
Definition: ScaledBasis1d.h:44
A 1-d affine transform that can be used to map one interval to another.
Definition: Scaling1d.h:46
SumMode
Enum used to control how to sum polynomial terms.
Definition: SafeSum.h:32
@ FAST
Summation using regular floating-point addition.
table::Key< table::Array< double > > basis
Definition: PsfexPsf.cc:361
A recurrence relation concept for RecurrenceBasis1d.
static double getB1(double x)
Return the first element of the basis, .
static double next(double x, std::size_t n, double current, double previous)
Return the next element in the recurrence.
static double getB0(double x)
Return the zeroth element of the basis, .
table::Key< int > order