LSST Applications g070148d5b3+33e5256705,g0d53e28543+25c8b88941,g0da5cf3356+2dd1178308,g1081da9e2a+62d12e78cb,g17e5ecfddb+7e422d6136,g1c76d35bf8+ede3a706f7,g295839609d+225697d880,g2e2c1a68ba+cc1f6f037e,g2ffcdf413f+853cd4dcde,g38293774b4+62d12e78cb,g3b44f30a73+d953f1ac34,g48ccf36440+885b902d19,g4b2f1765b6+7dedbde6d2,g5320a0a9f6+0c5d6105b6,g56b687f8c9+ede3a706f7,g5c4744a4d9+ef6ac23297,g5ffd174ac0+0c5d6105b6,g6075d09f38+66af417445,g667d525e37+2ced63db88,g670421136f+2ced63db88,g71f27ac40c+2ced63db88,g774830318a+463cbe8d1f,g7876bc68e5+1d137996f1,g7985c39107+62d12e78cb,g7fdac2220c+0fd8241c05,g96f01af41f+368e6903a7,g9ca82378b8+2ced63db88,g9d27549199+ef6ac23297,gabe93b2c52+e3573e3735,gb065e2a02a+3dfbe639da,gbc3249ced9+0c5d6105b6,gbec6a3398f+0c5d6105b6,gc9534b9d65+35b9f25267,gd01420fc67+0c5d6105b6,geee7ff78d7+a14128c129,gf63283c776+ede3a706f7,gfed783d017+0c5d6105b6,w.2022.47
LSST Data Management Base Package
Loading...
Searching...
No Matches
insertFakes.py
Go to the documentation of this file.
1# This file is part of pipe_tasks.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22"""
23Insert fakes into deepCoadds
24"""
25
26__all__ = ["InsertFakesConfig", "InsertFakesTask"]
27
28import galsim
29import numpy as np
30from astropy import units as u
31
32import lsst.geom as geom
33import lsst.afw.image as afwImage
34import lsst.afw.math as afwMath
35import lsst.pex.config as pexConfig
36import lsst.pipe.base as pipeBase
37
38from lsst.pipe.base import PipelineTask, PipelineTaskConfig, PipelineTaskConnections
39import lsst.pipe.base.connectionTypes as cT
40from lsst.pex.exceptions import LogicError, InvalidParameterError
41from lsst.geom import SpherePoint, radians, Box2D, Point2D
42
43
44def _add_fake_sources(exposure, objects, calibFluxRadius=12.0, logger=None):
45 """Add fake sources to the given exposure
46
47 Parameters
48 ----------
49 exposure : `lsst.afw.image.exposure.exposure.ExposureF`
50 The exposure into which the fake sources should be added
51 objects : `typing.Iterator` [`tuple` ['lsst.geom.SpherePoint`, `galsim.GSObject`]]
52 An iterator of tuples that contains (or generates) locations and object
53 surface brightness profiles to inject.
54 calibFluxRadius : `float`, optional
55 Aperture radius (in pixels) used to define the calibration for this
56 exposure+catalog. This is used to produce the correct instrumental fluxes
57 within the radius. The value should match that of the field defined in
58 slot_CalibFlux_instFlux.
59 logger : `lsst.log.log.log.Log` or `logging.Logger`, optional
60 Logger.
61 """
62 exposure.mask.addMaskPlane("FAKE")
63 bitmask = exposure.mask.getPlaneBitMask("FAKE")
64 if logger:
65 logger.info(f"Adding mask plane with bitmask {bitmask}")
66
67 wcs = exposure.getWcs()
68 psf = exposure.getPsf()
69
70 bbox = exposure.getBBox()
71 fullBounds = galsim.BoundsI(bbox.minX, bbox.maxX, bbox.minY, bbox.maxY)
72 gsImg = galsim.Image(exposure.image.array, bounds=fullBounds)
73
74 pixScale = wcs.getPixelScale(bbox.getCenter()).asArcseconds()
75
76 for spt, gsObj in objects:
77 pt = wcs.skyToPixel(spt)
78 posd = galsim.PositionD(pt.x, pt.y)
79 posi = galsim.PositionI(pt.x//1, pt.y//1)
80 if logger:
81 logger.debug(f"Adding fake source at {pt}")
82
83 mat = wcs.linearizePixelToSky(spt, geom.arcseconds).getMatrix()
84 gsWCS = galsim.JacobianWCS(mat[0, 0], mat[0, 1], mat[1, 0], mat[1, 1])
85
86 # This check is here because sometimes the WCS
87 # is multivalued and objects that should not be
88 # were being included.
89 gsPixScale = np.sqrt(gsWCS.pixelArea())
90 if gsPixScale < pixScale/2 or gsPixScale > pixScale*2:
91 continue
92
93 try:
94 psfArr = psf.computeKernelImage(pt).array
95 apCorr = psf.computeApertureFlux(calibFluxRadius, pt)
96 except InvalidParameterError:
97 # Try mapping to nearest point contained in bbox.
98 contained_pt = Point2D(
99 np.clip(pt.x, bbox.minX, bbox.maxX),
100 np.clip(pt.y, bbox.minY, bbox.maxY)
101 )
102 if pt == contained_pt: # no difference, so skip immediately
103 if logger:
104 logger.infof(
105 "Cannot compute Psf for object at {}; skipping",
106 pt
107 )
108 continue
109 # otherwise, try again with new point
110 try:
111 psfArr = psf.computeKernelImage(contained_pt).array
112 apCorr = psf.computeApertureFlux(calibFluxRadius, contained_pt)
113 except InvalidParameterError:
114 if logger:
115 logger.infof(
116 "Cannot compute Psf for object at {}; skipping",
117 pt
118 )
119 continue
120
121 psfArr /= apCorr
122 gsPSF = galsim.InterpolatedImage(galsim.Image(psfArr), wcs=gsWCS)
123
124 conv = galsim.Convolve(gsObj, gsPSF)
125 stampSize = conv.getGoodImageSize(gsWCS.minLinearScale())
126 subBounds = galsim.BoundsI(posi).withBorder(stampSize//2)
127 subBounds &= fullBounds
128
129 if subBounds.area() > 0:
130 subImg = gsImg[subBounds]
131 offset = posd - subBounds.true_center
132 # Note, for calexp injection, pixel is already part of the PSF and
133 # for coadd injection, it's incorrect to include the output pixel.
134 # So for both cases, we draw using method='no_pixel'.
135
136 conv.drawImage(
137 subImg,
138 add_to_image=True,
139 offset=offset,
140 wcs=gsWCS,
141 method='no_pixel'
142 )
143
144 subBox = geom.Box2I(
145 geom.Point2I(subBounds.xmin, subBounds.ymin),
146 geom.Point2I(subBounds.xmax, subBounds.ymax)
147 )
148 exposure[subBox].mask.array |= bitmask
149
150
151def _isWCSGalsimDefault(wcs, hdr):
152 """Decide if wcs = galsim.PixelScale(1.0) is explicitly present in header,
153 or if it's just the galsim default.
154
155 Parameters
156 ----------
157 wcs : galsim.BaseWCS
158 Potentially default WCS.
159 hdr : galsim.fits.FitsHeader
160 Header as read in by galsim.
161
162 Returns
163 -------
164 isDefault : bool
165 True if default, False if explicitly set in header.
166 """
167 if wcs != galsim.PixelScale(1.0):
168 return False
169 if hdr.get('GS_WCS') is not None:
170 return False
171 if hdr.get('CTYPE1', 'LINEAR') == 'LINEAR':
172 return not any(k in hdr for k in ['CD1_1', 'CDELT1'])
173 for wcs_type in galsim.fitswcs.fits_wcs_types:
174 # If one of these succeeds, then assume result is explicit
175 try:
176 wcs_type._readHeader(hdr)
177 return False
178 except Exception:
179 pass
180 else:
181 return not any(k in hdr for k in ['CD1_1', 'CDELT1'])
182
183
184class InsertFakesConnections(PipelineTaskConnections,
185 defaultTemplates={"coaddName": "deep",
186 "fakesType": "fakes_"},
187 dimensions=("tract", "patch", "band", "skymap")):
188
189 image = cT.Input(
190 doc="Image into which fakes are to be added.",
191 name="{coaddName}Coadd",
192 storageClass="ExposureF",
193 dimensions=("tract", "patch", "band", "skymap")
194 )
195
196 fakeCat = cT.Input(
197 doc="Catalog of fake sources to draw inputs from.",
198 name="{fakesType}fakeSourceCat",
199 storageClass="DataFrame",
200 dimensions=("tract", "skymap")
201 )
202
203 imageWithFakes = cT.Output(
204 doc="Image with fake sources added.",
205 name="{fakesType}{coaddName}Coadd",
206 storageClass="ExposureF",
207 dimensions=("tract", "patch", "band", "skymap")
208 )
209
210
211class InsertFakesConfig(PipelineTaskConfig,
212 pipelineConnections=InsertFakesConnections):
213 """Config for inserting fake sources
214 """
215
216 # Unchanged
217
218 doCleanCat = pexConfig.Field(
219 doc="If true removes bad sources from the catalog.",
220 dtype=bool,
221 default=True,
222 )
223
224 fakeType = pexConfig.Field(
225 doc="What type of fake catalog to use, snapshot (includes variability in the magnitudes calculated "
226 "from the MJD of the image), static (no variability) or filename for a user defined fits"
227 "catalog.",
228 dtype=str,
229 default="static",
230 )
231
232 calibFluxRadius = pexConfig.Field(
233 doc="Aperture radius (in pixels) that was used to define the calibration for this image+catalog. "
234 "This will be used to produce the correct instrumental fluxes within the radius. "
235 "This value should match that of the field defined in slot_CalibFlux_instFlux.",
236 dtype=float,
237 default=12.0,
238 )
239
240 coaddName = pexConfig.Field(
241 doc="The name of the type of coadd used",
242 dtype=str,
243 default="deep",
244 )
245
246 doSubSelectSources = pexConfig.Field(
247 doc="Set to True if you wish to sub select sources to be input based on the value in the column"
248 "set in the sourceSelectionColName config option.",
249 dtype=bool,
250 default=False
251 )
252
253 insertImages = pexConfig.Field(
254 doc="Insert images directly? True or False.",
255 dtype=bool,
256 default=False,
257 )
258
259 insertOnlyStars = pexConfig.Field(
260 doc="Insert only stars? True or False.",
261 dtype=bool,
262 default=False,
263 )
264
265 doProcessAllDataIds = pexConfig.Field(
266 doc="If True, all input data IDs will be processed, even those containing no fake sources.",
267 dtype=bool,
268 default=False,
269 )
270
271 trimBuffer = pexConfig.Field(
272 doc="Size of the pixel buffer surrounding the image. Only those fake sources with a centroid"
273 "falling within the image+buffer region will be considered for fake source injection.",
274 dtype=int,
275 default=100,
276 )
277
278 sourceType = pexConfig.Field(
279 doc="The column name for the source type used in the fake source catalog.",
280 dtype=str,
281 default="sourceType",
282 )
283
284 fits_alignment = pexConfig.ChoiceField(
285 doc="How should injections from FITS files be aligned?",
286 dtype=str,
287 allowed={
288 "wcs": (
289 "Input image will be transformed such that the local WCS in "
290 "the FITS header matches the local WCS in the target image. "
291 "I.e., North, East, and angular distances in the input image "
292 "will match North, East, and angular distances in the target "
293 "image."
294 ),
295 "pixel": (
296 "Input image will _not_ be transformed. Up, right, and pixel "
297 "distances in the input image will match up, right and pixel "
298 "distances in the target image."
299 )
300 },
301 default="pixel"
302 )
303
304 # New source catalog config variables
305
306 ra_col = pexConfig.Field(
307 doc="Source catalog column name for RA (in radians).",
308 dtype=str,
309 default="ra",
310 )
311
312 dec_col = pexConfig.Field(
313 doc="Source catalog column name for dec (in radians).",
314 dtype=str,
315 default="dec",
316 )
317
318 bulge_semimajor_col = pexConfig.Field(
319 doc="Source catalog column name for the semimajor axis (in arcseconds) "
320 "of the bulge half-light ellipse.",
321 dtype=str,
322 default="bulge_semimajor",
323 )
324
325 bulge_axis_ratio_col = pexConfig.Field(
326 doc="Source catalog column name for the axis ratio of the bulge "
327 "half-light ellipse.",
328 dtype=str,
329 default="bulge_axis_ratio",
330 )
331
332 bulge_pa_col = pexConfig.Field(
333 doc="Source catalog column name for the position angle (measured from "
334 "North through East in degrees) of the semimajor axis of the bulge "
335 "half-light ellipse.",
336 dtype=str,
337 default="bulge_pa",
338 )
339
340 bulge_n_col = pexConfig.Field(
341 doc="Source catalog column name for the Sersic index of the bulge.",
342 dtype=str,
343 default="bulge_n",
344 )
345
346 disk_semimajor_col = pexConfig.Field(
347 doc="Source catalog column name for the semimajor axis (in arcseconds) "
348 "of the disk half-light ellipse.",
349 dtype=str,
350 default="disk_semimajor",
351 )
352
353 disk_axis_ratio_col = pexConfig.Field(
354 doc="Source catalog column name for the axis ratio of the disk "
355 "half-light ellipse.",
356 dtype=str,
357 default="disk_axis_ratio",
358 )
359
360 disk_pa_col = pexConfig.Field(
361 doc="Source catalog column name for the position angle (measured from "
362 "North through East in degrees) of the semimajor axis of the disk "
363 "half-light ellipse.",
364 dtype=str,
365 default="disk_pa",
366 )
367
368 disk_n_col = pexConfig.Field(
369 doc="Source catalog column name for the Sersic index of the disk.",
370 dtype=str,
371 default="disk_n",
372 )
373
374 bulge_disk_flux_ratio_col = pexConfig.Field(
375 doc="Source catalog column name for the bulge/disk flux ratio.",
376 dtype=str,
377 default="bulge_disk_flux_ratio",
378 )
379
380 mag_col = pexConfig.Field(
381 doc="Source catalog column name template for magnitudes, in the format "
382 "``filter name``_mag_col. E.g., if this config variable is set to "
383 "``%s_mag``, then the i-band magnitude will be searched for in the "
384 "``i_mag`` column of the source catalog.",
385 dtype=str,
386 default="%s_mag"
387 )
388
389 select_col = pexConfig.Field(
390 doc="Source catalog column name to be used to select which sources to "
391 "add.",
392 dtype=str,
393 default="select",
394 )
395
396 length_col = pexConfig.Field(
397 doc="Source catalog column name for trail length (in pixels).",
398 dtype=str,
399 default="trail_length",
400 )
401
402 angle_col = pexConfig.Field(
403 doc="Source catalog column name for trail angle (in radians).",
404 dtype=str,
405 default="trail_angle",
406 )
407
408 # Deprecated config variables
409
410 raColName = pexConfig.Field(
411 doc="RA column name used in the fake source catalog.",
412 dtype=str,
413 default="raJ2000",
414 deprecated="Use `ra_col` instead."
415 )
416
417 decColName = pexConfig.Field(
418 doc="Dec. column name used in the fake source catalog.",
419 dtype=str,
420 default="decJ2000",
421 deprecated="Use `dec_col` instead."
422 )
423
424 diskHLR = pexConfig.Field(
425 doc="Column name for the disk half light radius used in the fake source catalog.",
426 dtype=str,
427 default="DiskHalfLightRadius",
428 deprecated=(
429 "Use `disk_semimajor_col`, `disk_axis_ratio_col`, and `disk_pa_col`"
430 " to specify disk half-light ellipse."
431 )
432 )
433
434 aDisk = pexConfig.Field(
435 doc="The column name for the semi major axis length of the disk component used in the fake source"
436 "catalog.",
437 dtype=str,
438 default="a_d",
439 deprecated=(
440 "Use `disk_semimajor_col`, `disk_axis_ratio_col`, and `disk_pa_col`"
441 " to specify disk half-light ellipse."
442 )
443 )
444
445 bDisk = pexConfig.Field(
446 doc="The column name for the semi minor axis length of the disk component.",
447 dtype=str,
448 default="b_d",
449 deprecated=(
450 "Use `disk_semimajor_col`, `disk_axis_ratio_col`, and `disk_pa_col`"
451 " to specify disk half-light ellipse."
452 )
453 )
454
455 paDisk = pexConfig.Field(
456 doc="The column name for the PA of the disk component used in the fake source catalog.",
457 dtype=str,
458 default="pa_disk",
459 deprecated=(
460 "Use `disk_semimajor_col`, `disk_axis_ratio_col`, and `disk_pa_col`"
461 " to specify disk half-light ellipse."
462 )
463 )
464
465 nDisk = pexConfig.Field(
466 doc="The column name for the sersic index of the disk component used in the fake source catalog.",
467 dtype=str,
468 default="disk_n",
469 deprecated="Use `disk_n_col` instead."
470 )
471
472 bulgeHLR = pexConfig.Field(
473 doc="Column name for the bulge half light radius used in the fake source catalog.",
474 dtype=str,
475 default="BulgeHalfLightRadius",
476 deprecated=(
477 "Use `bulge_semimajor_col`, `bulge_axis_ratio_col`, and "
478 "`bulge_pa_col` to specify disk half-light ellipse."
479 )
480 )
481
482 aBulge = pexConfig.Field(
483 doc="The column name for the semi major axis length of the bulge component.",
484 dtype=str,
485 default="a_b",
486 deprecated=(
487 "Use `bulge_semimajor_col`, `bulge_axis_ratio_col`, and "
488 "`bulge_pa_col` to specify disk half-light ellipse."
489 )
490 )
491
492 bBulge = pexConfig.Field(
493 doc="The column name for the semi minor axis length of the bulge component used in the fake source "
494 "catalog.",
495 dtype=str,
496 default="b_b",
497 deprecated=(
498 "Use `bulge_semimajor_col`, `bulge_axis_ratio_col`, and "
499 "`bulge_pa_col` to specify disk half-light ellipse."
500 )
501 )
502
503 paBulge = pexConfig.Field(
504 doc="The column name for the PA of the bulge component used in the fake source catalog.",
505 dtype=str,
506 default="pa_bulge",
507 deprecated=(
508 "Use `bulge_semimajor_col`, `bulge_axis_ratio_col`, and "
509 "`bulge_pa_col` to specify disk half-light ellipse."
510 )
511 )
512
513 nBulge = pexConfig.Field(
514 doc="The column name for the sersic index of the bulge component used in the fake source catalog.",
515 dtype=str,
516 default="bulge_n",
517 deprecated="Use `bulge_n_col` instead."
518 )
519
520 magVar = pexConfig.Field(
521 doc="The column name for the magnitude calculated taking variability into account. In the format "
522 "``filter name``magVar, e.g. imagVar for the magnitude in the i band.",
523 dtype=str,
524 default="%smagVar",
525 deprecated="Use `mag_col` instead."
526 )
527
528 sourceSelectionColName = pexConfig.Field(
529 doc="The name of the column in the input fakes catalogue to be used to determine which sources to"
530 "add, default is none and when this is used all sources are added.",
531 dtype=str,
532 default="templateSource",
533 deprecated="Use `select_col` instead."
534 )
535
536
537class InsertFakesTask(PipelineTask):
538 """Insert fake objects into images.
539
540 Add fake stars and galaxies to the given image, read in through the dataRef. Galaxy parameters are read in
541 from the specified file and then modelled using galsim.
542
543 `InsertFakesTask` has five functions that make images of the fake sources and then add them to the
544 image.
545
546 `addPixCoords`
547 Use the WCS information to add the pixel coordinates of each source.
548 `mkFakeGalsimGalaxies`
549 Use Galsim to make fake double sersic galaxies for each set of galaxy parameters in the input file.
550 `mkFakeStars`
551 Use the PSF information from the image to make a fake star using the magnitude information from the
552 input file.
553 `cleanCat`
554 Remove rows of the input fake catalog which have half light radius, of either the bulge or the disk,
555 that are 0. Also removes rows that have Sersic index outside of galsim's allowed paramters. If
556 the config option sourceSelectionColName is set then this function limits the catalog of input fakes
557 to only those which are True in this column.
558 `addFakeSources`
559 Add the fake sources to the image.
560
561 """
562
563 _DefaultName = "insertFakes"
564 ConfigClass = InsertFakesConfig
565
566 def runQuantum(self, butlerQC, inputRefs, outputRefs):
567 inputs = butlerQC.get(inputRefs)
568 inputs["wcs"] = inputs["image"].getWcs()
569 inputs["photoCalib"] = inputs["image"].getPhotoCalib()
570
571 outputs = self.run(**inputs)
572 butlerQC.put(outputs, outputRefs)
573
574 def run(self, fakeCat, image, wcs, photoCalib):
575 """Add fake sources to an image.
576
577 Parameters
578 ----------
579 fakeCat : `pandas.core.frame.DataFrame`
580 The catalog of fake sources to be input
581 image : `lsst.afw.image.exposure.exposure.ExposureF`
582 The image into which the fake sources should be added
584 WCS to use to add fake sources
585 photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`
586 Photometric calibration to be used to calibrate the fake sources
587
588 Returns
589 -------
590 resultStruct : `lsst.pipe.base.struct.Struct`
591 contains : image : `lsst.afw.image.exposure.exposure.ExposureF`
592
593 Notes
594 -----
595 Adds pixel coordinates for each source to the fakeCat and removes objects with bulge or disk half
596 light radius = 0 (if ``config.doCleanCat = True``).
597
598 Adds the ``Fake`` mask plane to the image which is then set by `addFakeSources` to mark where fake
599 sources have been added. Uses the information in the ``fakeCat`` to make fake galaxies (using galsim)
600 and fake stars, using the PSF models from the PSF information for the image. These are then added to
601 the image and the image with fakes included returned.
602
603 The galsim galaxies are made using a double sersic profile, one for the bulge and one for the disk,
604 this is then convolved with the PSF at that point.
605 """
606 # Attach overriding wcs and photoCalib to image, but retain originals
607 # so we can reset at the end.
608 origWcs = image.getWcs()
609 origPhotoCalib = image.getPhotoCalib()
610 image.setWcs(wcs)
611 image.setPhotoCalib(photoCalib)
612
613 band = image.getFilter().bandLabel
614 fakeCat = self._standardizeColumns(fakeCat, band)
615
616 fakeCat = self.addPixCoords(fakeCat, image)
617 fakeCat = self.trimFakeCat(fakeCat, image)
618
619 if len(fakeCat) > 0:
620 if not self.config.insertImages:
621 if isinstance(fakeCat[self.config.sourceType].iloc[0], str):
622 galCheckVal = "galaxy"
623 starCheckVal = "star"
624 trailCheckVal = "trail"
625 elif isinstance(fakeCat[self.config.sourceType].iloc[0], bytes):
626 galCheckVal = b"galaxy"
627 starCheckVal = b"star"
628 trailCheckVal = b"trail"
629 elif isinstance(fakeCat[self.config.sourceType].iloc[0], (int, float)):
630 galCheckVal = 1
631 starCheckVal = 0
632 trailCheckVal = 2
633 else:
634 raise TypeError(
635 "sourceType column does not have required type, should be str, bytes or int"
636 )
637 if self.config.doCleanCat:
638 fakeCat = self.cleanCat(fakeCat, starCheckVal)
639
640 generator = self._generateGSObjectsFromCatalog(image, fakeCat, galCheckVal, starCheckVal,
641 trailCheckVal)
642 else:
643 generator = self._generateGSObjectsFromImages(image, fakeCat)
644 _add_fake_sources(image, generator, calibFluxRadius=self.config.calibFluxRadius, logger=self.log)
645 elif len(fakeCat) == 0 and self.config.doProcessAllDataIds:
646 self.log.warning("No fakes found for this dataRef; processing anyway.")
647 image.mask.addMaskPlane("FAKE")
648 else:
649 raise RuntimeError("No fakes found for this dataRef.")
650
651 # restore original exposure WCS and photoCalib
652 image.setWcs(origWcs)
653 image.setPhotoCalib(origPhotoCalib)
654
655 resultStruct = pipeBase.Struct(imageWithFakes=image)
656
657 return resultStruct
658
659 def _standardizeColumns(self, fakeCat, band):
660 """Use config variables to 'standardize' the expected columns and column
661 names in the input catalog.
662
663 Parameters
664 ----------
665 fakeCat : `pandas.core.frame.DataFrame`
666 The catalog of fake sources to be input
667 band : `str`
668 Label for the current band being processed.
669
670 Returns
671 -------
672 outCat : `pandas.core.frame.DataFrame`
673 The standardized catalog of fake sources
674 """
675 cfg = self.config
676 replace_dict = {}
677
678 def add_to_replace_dict(new_name, depr_name, std_name):
679 if new_name in fakeCat.columns:
680 replace_dict[new_name] = std_name
681 elif depr_name in fakeCat.columns:
682 replace_dict[depr_name] = std_name
683 else:
684 raise ValueError(f"Could not determine column for {std_name}.")
685
686 # Prefer new config variables over deprecated config variables.
687 # RA, dec, and mag are always required. Do these first
688 for new_name, depr_name, std_name in [
689 (cfg.ra_col, cfg.raColName, 'ra'),
690 (cfg.dec_col, cfg.decColName, 'dec'),
691 (cfg.mag_col%band, cfg.magVar%band, 'mag')
692 ]:
693 add_to_replace_dict(new_name, depr_name, std_name)
694 # Only handle bulge/disk params if not injecting images
695 if not cfg.insertImages and not cfg.insertOnlyStars:
696 for new_name, depr_name, std_name in [
697 (cfg.bulge_n_col, cfg.nBulge, 'bulge_n'),
698 (cfg.bulge_pa_col, cfg.paBulge, 'bulge_pa'),
699 (cfg.disk_n_col, cfg.nDisk, 'disk_n'),
700 (cfg.disk_pa_col, cfg.paDisk, 'disk_pa'),
701 ]:
702 add_to_replace_dict(new_name, depr_name, std_name)
703
704 if cfg.doSubSelectSources:
705 add_to_replace_dict(
706 cfg.select_col,
707 cfg.sourceSelectionColName,
708 'select'
709 )
710 fakeCat = fakeCat.rename(columns=replace_dict, copy=False)
711
712 # Handling the half-light radius and axis-ratio are trickier, since we
713 # moved from expecting (HLR, a, b) to expecting (semimajor, axis_ratio).
714 # Just handle these manually.
715 if not cfg.insertImages and not cfg.insertOnlyStars:
716 if (
717 cfg.bulge_semimajor_col in fakeCat.columns
718 and cfg.bulge_axis_ratio_col in fakeCat.columns
719 ):
720 fakeCat = fakeCat.rename(
721 columns={
722 cfg.bulge_semimajor_col: 'bulge_semimajor',
723 cfg.bulge_axis_ratio_col: 'bulge_axis_ratio',
724 cfg.disk_semimajor_col: 'disk_semimajor',
725 cfg.disk_axis_ratio_col: 'disk_axis_ratio',
726 },
727 copy=False
728 )
729 elif (
730 cfg.bulgeHLR in fakeCat.columns
731 and cfg.aBulge in fakeCat.columns
732 and cfg.bBulge in fakeCat.columns
733 ):
734 fakeCat['bulge_axis_ratio'] = (
735 fakeCat[cfg.bBulge]/fakeCat[cfg.aBulge]
736 )
737 fakeCat['bulge_semimajor'] = (
738 fakeCat[cfg.bulgeHLR]/np.sqrt(fakeCat['bulge_axis_ratio'])
739 )
740 fakeCat['disk_axis_ratio'] = (
741 fakeCat[cfg.bDisk]/fakeCat[cfg.aDisk]
742 )
743 fakeCat['disk_semimajor'] = (
744 fakeCat[cfg.diskHLR]/np.sqrt(fakeCat['disk_axis_ratio'])
745 )
746 else:
747 raise ValueError(
748 "Could not determine columns for half-light radius and "
749 "axis ratio."
750 )
751
752 # Process the bulge/disk flux ratio if possible.
753 if cfg.bulge_disk_flux_ratio_col in fakeCat.columns:
754 fakeCat = fakeCat.rename(
755 columns={
756 cfg.bulge_disk_flux_ratio_col: 'bulge_disk_flux_ratio'
757 },
758 copy=False
759 )
760 else:
761 fakeCat['bulge_disk_flux_ratio'] = 1.0
762
763 return fakeCat
764
765 def _generateGSObjectsFromCatalog(self, exposure, fakeCat, galCheckVal, starCheckVal, trailCheckVal):
766 """Process catalog to generate `galsim.GSObject` s.
767
768 Parameters
769 ----------
770 exposure : `lsst.afw.image.exposure.exposure.ExposureF`
771 The exposure into which the fake sources should be added
772 fakeCat : `pandas.core.frame.DataFrame`
773 The catalog of fake sources to be input
774 galCheckVal : `str`, `bytes` or `int`
775 The value that is set in the sourceType column to specify an object is a galaxy.
776 starCheckVal : `str`, `bytes` or `int`
777 The value that is set in the sourceType column to specify an object is a star.
778 trailCheckVal : `str`, `bytes` or `int`
779 The value that is set in the sourceType column to specify an object is a star
780
781 Yields
782 ------
783 gsObjects : `generator`
784 A generator of tuples of `lsst.geom.SpherePoint` and `galsim.GSObject`.
785 """
786 wcs = exposure.getWcs()
787 photoCalib = exposure.getPhotoCalib()
788
789 self.log.info("Making %d objects for insertion", len(fakeCat))
790
791 for (index, row) in fakeCat.iterrows():
792 ra = row['ra']
793 dec = row['dec']
794 skyCoord = SpherePoint(ra, dec, radians)
795 xy = wcs.skyToPixel(skyCoord)
796
797 try:
798 flux = photoCalib.magnitudeToInstFlux(row['mag'], xy)
799 except LogicError:
800 continue
801
802 sourceType = row[self.config.sourceType]
803 if sourceType == galCheckVal:
804 # GalSim convention: HLR = sqrt(a * b) = a * sqrt(b / a)
805 bulge_gs_HLR = row['bulge_semimajor']*np.sqrt(row['bulge_axis_ratio'])
806 bulge = galsim.Sersic(n=row['bulge_n'], half_light_radius=bulge_gs_HLR)
807 bulge = bulge.shear(q=row['bulge_axis_ratio'], beta=((90 - row['bulge_pa'])*galsim.degrees))
808
809 disk_gs_HLR = row['disk_semimajor']*np.sqrt(row['disk_axis_ratio'])
810 disk = galsim.Sersic(n=row['disk_n'], half_light_radius=disk_gs_HLR)
811 disk = disk.shear(q=row['disk_axis_ratio'], beta=((90 - row['disk_pa'])*galsim.degrees))
812
813 gal = bulge*row['bulge_disk_flux_ratio'] + disk
814 gal = gal.withFlux(flux)
815
816 yield skyCoord, gal
817 elif sourceType == starCheckVal:
818 star = galsim.DeltaFunction()
819 star = star.withFlux(flux)
820 yield skyCoord, star
821 elif sourceType == trailCheckVal:
822 length = row['trail_length']
823 angle = row['trail_angle']
824
825 # Make a 'thin' box to mimic a line surface brightness profile
826 thickness = 1e-6 # Make the box much thinner than a pixel
827 theta = galsim.Angle(angle*galsim.radians)
828 trail = galsim.Box(length, thickness)
829 trail = trail.rotate(theta)
830 trail = trail.withFlux(flux*length)
831
832 # Galsim objects are assumed to be in sky-coordinates. Since
833 # we want the trail to appear as defined above in image-
834 # coordinates, we must transform the trail here.
835 mat = wcs.linearizePixelToSky(skyCoord, geom.arcseconds).getMatrix()
836 trail = trail.transform(mat[0, 0], mat[0, 1], mat[1, 0], mat[1, 1])
837
838 yield skyCoord, trail
839 else:
840 raise TypeError(f"Unknown sourceType {sourceType}")
841
842 def _generateGSObjectsFromImages(self, exposure, fakeCat):
843 """Process catalog to generate `galsim.GSObject` s.
844
845 Parameters
846 ----------
847 exposure : `lsst.afw.image.exposure.exposure.ExposureF`
848 The exposure into which the fake sources should be added
849 fakeCat : `pandas.core.frame.DataFrame`
850 The catalog of fake sources to be input
851
852 Yields
853 ------
854 gsObjects : `generator`
855 A generator of tuples of `lsst.geom.SpherePoint` and `galsim.GSObject`.
856 """
857 band = exposure.getFilter().bandLabel
858 wcs = exposure.getWcs()
859 photoCalib = exposure.getPhotoCalib()
860
861 self.log.info("Processing %d fake images", len(fakeCat))
862
863 for (index, row) in fakeCat.iterrows():
864 ra = row['ra']
865 dec = row['dec']
866 skyCoord = SpherePoint(ra, dec, radians)
867 xy = wcs.skyToPixel(skyCoord)
868
869 try:
870 flux = photoCalib.magnitudeToInstFlux(row['mag'], xy)
871 except LogicError:
872 continue
873
874 imFile = row[band+"imFilename"]
875 try:
876 imFile = imFile.decode("utf-8")
877 except AttributeError:
878 pass
879 imFile = imFile.strip()
880 im = galsim.fits.read(imFile, read_header=True)
881
882 if self.config.fits_alignment == "wcs":
883 # galsim.fits.read will always attach a WCS to its output. If it
884 # can't find a WCS in the FITS header, then it defaults to
885 # scale = 1.0 arcsec / pix. So if that's the scale, then we
886 # need to check if it was explicitly set or if it's just the
887 # default. If it's just the default then we should raise an
888 # exception.
889 if _isWCSGalsimDefault(im.wcs, im.header):
890 raise RuntimeError(
891 f"Cannot find WCS in input FITS file {imFile}"
892 )
893 elif self.config.fits_alignment == "pixel":
894 # Here we need to set im.wcs to the local WCS at the target
895 # position.
896 linWcs = wcs.linearizePixelToSky(skyCoord, geom.arcseconds)
897 mat = linWcs.getMatrix()
898 im.wcs = galsim.JacobianWCS(
899 mat[0, 0], mat[0, 1], mat[1, 0], mat[1, 1]
900 )
901 else:
902 raise ValueError(
903 f"Unknown fits_alignment type {self.config.fits_alignment}"
904 )
905
906 obj = galsim.InterpolatedImage(im, calculate_stepk=False)
907 obj = obj.withFlux(flux)
908 yield skyCoord, obj
909
910 def processImagesForInsertion(self, fakeCat, wcs, psf, photoCalib, band, pixelScale):
911 """Process images from files into the format needed for insertion.
912
913 Parameters
914 ----------
915 fakeCat : `pandas.core.frame.DataFrame`
916 The catalog of fake sources to be input
917 wcs : `lsst.afw.geom.skyWcs.skyWcs.SkyWc`
918 WCS to use to add fake sources
919 psf : `lsst.meas.algorithms.coaddPsf.coaddPsf.CoaddPsf` or
920 `lsst.meas.extensions.psfex.psfexPsf.PsfexPsf`
921 The PSF information to use to make the PSF images
922 photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`
923 Photometric calibration to be used to calibrate the fake sources
924 band : `str`
925 The filter band that the observation was taken in.
926 pixelScale : `float`
927 The pixel scale of the image the sources are to be added to.
928
929 Returns
930 -------
931 galImages : `list`
932 A list of tuples of `lsst.afw.image.exposure.exposure.ExposureF` and
933 `lsst.geom.Point2D` of their locations.
934 For sources labelled as galaxy.
935 starImages : `list`
936 A list of tuples of `lsst.afw.image.exposure.exposure.ExposureF` and
937 `lsst.geom.Point2D` of their locations.
938 For sources labelled as star.
939
940 Notes
941 -----
942 The input fakes catalog needs to contain the absolute path to the image in the
943 band that is being used to add images to. It also needs to have the R.A. and
944 declination of the fake source in radians and the sourceType of the object.
945 """
946 galImages = []
947 starImages = []
948
949 self.log.info("Processing %d fake images", len(fakeCat))
950
951 for (imFile, sourceType, mag, x, y) in zip(fakeCat[band + "imFilename"].array,
952 fakeCat["sourceType"].array,
953 fakeCat['mag'].array,
954 fakeCat["x"].array, fakeCat["y"].array):
955
956 im = afwImage.ImageF.readFits(imFile)
957
958 xy = geom.Point2D(x, y)
959
960 # We put these two PSF calculations within this same try block so that we catch cases
961 # where the object's position is outside of the image.
962 try:
963 correctedFlux = psf.computeApertureFlux(self.config.calibFluxRadius, xy)
964 psfKernel = psf.computeKernelImage(xy).getArray()
965 psfKernel /= correctedFlux
966
967 except InvalidParameterError:
968 self.log.info("%s at %0.4f, %0.4f outside of image", sourceType, x, y)
969 continue
970
971 psfIm = galsim.InterpolatedImage(galsim.Image(psfKernel), scale=pixelScale)
972 galsimIm = galsim.InterpolatedImage(galsim.Image(im.array), scale=pixelScale)
973 convIm = galsim.Convolve([galsimIm, psfIm])
974
975 try:
976 outIm = convIm.drawImage(scale=pixelScale, method="real_space").array
977 except (galsim.errors.GalSimFFTSizeError, MemoryError):
978 continue
979
980 imSum = np.sum(outIm)
981 divIm = outIm/imSum
982
983 try:
984 flux = photoCalib.magnitudeToInstFlux(mag, xy)
985 except LogicError:
986 flux = 0
987
988 imWithFlux = flux*divIm
989
990 if sourceType == b"galaxy":
991 galImages.append((afwImage.ImageF(imWithFlux), xy))
992 if sourceType == b"star":
993 starImages.append((afwImage.ImageF(imWithFlux), xy))
994
995 return galImages, starImages
996
997 def addPixCoords(self, fakeCat, image):
998
999 """Add pixel coordinates to the catalog of fakes.
1000
1001 Parameters
1002 ----------
1003 fakeCat : `pandas.core.frame.DataFrame`
1004 The catalog of fake sources to be input
1005 image : `lsst.afw.image.exposure.exposure.ExposureF`
1006 The image into which the fake sources should be added
1007
1008 Returns
1009 -------
1010 fakeCat : `pandas.core.frame.DataFrame`
1011 """
1012 wcs = image.getWcs()
1013 ras = fakeCat['ra'].values
1014 decs = fakeCat['dec'].values
1015 xs, ys = wcs.skyToPixelArray(ras, decs)
1016 fakeCat["x"] = xs
1017 fakeCat["y"] = ys
1018
1019 return fakeCat
1020
1021 def trimFakeCat(self, fakeCat, image):
1022 """Trim the fake cat to the size of the input image plus trimBuffer padding.
1023
1024 `fakeCat` must be processed with addPixCoords before using this method.
1025
1026 Parameters
1027 ----------
1028 fakeCat : `pandas.core.frame.DataFrame`
1029 The catalog of fake sources to be input
1030 image : `lsst.afw.image.exposure.exposure.ExposureF`
1031 The image into which the fake sources should be added
1032
1033 Returns
1034 -------
1035 fakeCat : `pandas.core.frame.DataFrame`
1036 The original fakeCat trimmed to the area of the image
1037 """
1038 wideBbox = Box2D(image.getBBox()).dilatedBy(self.config.trimBuffer)
1039
1040 # prefilter in ra/dec to avoid cases where the wcs incorrectly maps
1041 # input fakes which are really off the chip onto it.
1042 ras = fakeCat[self.config.ra_col].values * u.rad
1043 decs = fakeCat[self.config.dec_col].values * u.rad
1044
1045 isContainedRaDec = image.containsSkyCoords(ras, decs, padding=self.config.trimBuffer)
1046
1047 # also filter on the image BBox in pixel space
1048 xs = fakeCat["x"].values
1049 ys = fakeCat["y"].values
1050
1051 isContainedXy = xs >= wideBbox.minX
1052 isContainedXy &= xs <= wideBbox.maxX
1053 isContainedXy &= ys >= wideBbox.minY
1054 isContainedXy &= ys <= wideBbox.maxY
1055
1056 return fakeCat[isContainedRaDec & isContainedXy]
1057
1058 def mkFakeGalsimGalaxies(self, fakeCat, band, photoCalib, pixelScale, psf, image):
1059 """Make images of fake galaxies using GalSim.
1060
1061 Parameters
1062 ----------
1063 band : `str`
1064 pixelScale : `float`
1065 psf : `lsst.meas.extensions.psfex.psfexPsf.PsfexPsf`
1066 The PSF information to use to make the PSF images
1067 fakeCat : `pandas.core.frame.DataFrame`
1068 The catalog of fake sources to be input
1069 photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`
1070 Photometric calibration to be used to calibrate the fake sources
1071
1072 Yields
1073 ------
1074 galImages : `generator`
1075 A generator of tuples of `lsst.afw.image.exposure.exposure.ExposureF` and
1076 `lsst.geom.Point2D` of their locations.
1077
1078 Notes
1079 -----
1080
1081 Fake galaxies are made by combining two sersic profiles, one for the bulge and one for the disk. Each
1082 component has an individual sersic index (n), a, b and position angle (PA). The combined profile is
1083 then convolved with the PSF at the specified x, y position on the image.
1084
1085 The names of the columns in the ``fakeCat`` are configurable and are the column names from the
1086 University of Washington simulations database as default. For more information see the doc strings
1087 attached to the config options.
1088
1089 See mkFakeStars doc string for an explanation of calibration to instrumental flux.
1090 """
1091
1092 self.log.info("Making %d fake galaxy images", len(fakeCat))
1093
1094 for (index, row) in fakeCat.iterrows():
1095 xy = geom.Point2D(row["x"], row["y"])
1096
1097 # We put these two PSF calculations within this same try block so that we catch cases
1098 # where the object's position is outside of the image.
1099 try:
1100 correctedFlux = psf.computeApertureFlux(self.config.calibFluxRadius, xy)
1101 psfKernel = psf.computeKernelImage(xy).getArray()
1102 psfKernel /= correctedFlux
1103
1104 except InvalidParameterError:
1105 self.log.info("Galaxy at %0.4f, %0.4f outside of image", row["x"], row["y"])
1106 continue
1107
1108 try:
1109 flux = photoCalib.magnitudeToInstFlux(row['mag'], xy)
1110 except LogicError:
1111 flux = 0
1112
1113 # GalSim convention: HLR = sqrt(a * b) = a * sqrt(b / a)
1114 bulge_gs_HLR = row['bulge_semimajor']*np.sqrt(row['bulge_axis_ratio'])
1115 bulge = galsim.Sersic(n=row['bulge_n'], half_light_radius=bulge_gs_HLR)
1116 bulge = bulge.shear(q=row['bulge_axis_ratio'], beta=((90 - row['bulge_pa'])*galsim.degrees))
1117
1118 disk_gs_HLR = row['disk_semimajor']*np.sqrt(row['disk_axis_ratio'])
1119 disk = galsim.Sersic(n=row['disk_n'], half_light_radius=disk_gs_HLR)
1120 disk = disk.shear(q=row['disk_axis_ratio'], beta=((90 - row['disk_pa'])*galsim.degrees))
1121
1122 gal = bulge*row['bulge_disk_flux_ratio'] + disk
1123 gal = gal.withFlux(flux)
1124
1125 psfIm = galsim.InterpolatedImage(galsim.Image(psfKernel), scale=pixelScale)
1126 gal = galsim.Convolve([gal, psfIm])
1127 try:
1128 galIm = gal.drawImage(scale=pixelScale, method="real_space").array
1129 except (galsim.errors.GalSimFFTSizeError, MemoryError):
1130 continue
1131
1132 yield (afwImage.ImageF(galIm), xy)
1133
1134 def mkFakeStars(self, fakeCat, band, photoCalib, psf, image):
1135
1136 """Make fake stars based off the properties in the fakeCat.
1137
1138 Parameters
1139 ----------
1140 band : `str`
1141 psf : `lsst.meas.extensions.psfex.psfexPsf.PsfexPsf`
1142 The PSF information to use to make the PSF images
1143 fakeCat : `pandas.core.frame.DataFrame`
1144 The catalog of fake sources to be input
1145 image : `lsst.afw.image.exposure.exposure.ExposureF`
1146 The image into which the fake sources should be added
1147 photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`
1148 Photometric calibration to be used to calibrate the fake sources
1149
1150 Yields
1151 ------
1152 starImages : `generator`
1153 A generator of tuples of `lsst.afw.image.ImageF` of fake stars and
1154 `lsst.geom.Point2D` of their locations.
1155
1156 Notes
1157 -----
1158 To take a given magnitude and translate to the number of counts in the image
1159 we use photoCalib.magnitudeToInstFlux, which returns the instrumental flux for the
1160 given calibration radius used in the photometric calibration step.
1161 Thus `calibFluxRadius` should be set to this same radius so that we can normalize
1162 the PSF model to the correct instrumental flux within calibFluxRadius.
1163 """
1164
1165 self.log.info("Making %d fake star images", len(fakeCat))
1166
1167 for (index, row) in fakeCat.iterrows():
1168 xy = geom.Point2D(row["x"], row["y"])
1169
1170 # We put these two PSF calculations within this same try block so that we catch cases
1171 # where the object's position is outside of the image.
1172 try:
1173 correctedFlux = psf.computeApertureFlux(self.config.calibFluxRadius, xy)
1174 starIm = psf.computeImage(xy)
1175 starIm /= correctedFlux
1176
1177 except InvalidParameterError:
1178 self.log.info("Star at %0.4f, %0.4f outside of image", row["x"], row["y"])
1179 continue
1180
1181 try:
1182 flux = photoCalib.magnitudeToInstFlux(row['mag'], xy)
1183 except LogicError:
1184 flux = 0
1185
1186 starIm *= flux
1187 yield ((starIm.convertF(), xy))
1188
1189 def cleanCat(self, fakeCat, starCheckVal):
1190 """Remove rows from the fakes catalog which have HLR = 0 for either the buldge or disk component,
1191 also remove galaxies that have Sersic index outside the galsim min and max
1192 allowed (0.3 <= n <= 6.2).
1193
1194 Parameters
1195 ----------
1196 fakeCat : `pandas.core.frame.DataFrame`
1197 The catalog of fake sources to be input
1198 starCheckVal : `str`, `bytes` or `int`
1199 The value that is set in the sourceType column to specifiy an object is a star.
1200
1201 Returns
1202 -------
1203 fakeCat : `pandas.core.frame.DataFrame`
1204 The input catalog of fake sources but with the bad objects removed
1205 """
1206
1207 rowsToKeep = (((fakeCat['bulge_semimajor'] != 0.0) & (fakeCat['disk_semimajor'] != 0.0))
1208 | (fakeCat[self.config.sourceType] == starCheckVal))
1209 numRowsNotUsed = len(fakeCat) - len(np.where(rowsToKeep)[0])
1210 self.log.info("Removing %d rows with HLR = 0 for either the bulge or disk", numRowsNotUsed)
1211 fakeCat = fakeCat[rowsToKeep]
1212
1213 minN = galsim.Sersic._minimum_n
1214 maxN = galsim.Sersic._maximum_n
1215 rowsWithGoodSersic = (((fakeCat['bulge_n'] >= minN) & (fakeCat['bulge_n'] <= maxN)
1216 & (fakeCat['disk_n'] >= minN) & (fakeCat['disk_n'] <= maxN))
1217 | (fakeCat[self.config.sourceType] == starCheckVal))
1218 numRowsNotUsed = len(fakeCat) - len(np.where(rowsWithGoodSersic)[0])
1219 self.log.info("Removing %d rows of galaxies with nBulge or nDisk outside of %0.2f <= n <= %0.2f",
1220 numRowsNotUsed, minN, maxN)
1221 fakeCat = fakeCat[rowsWithGoodSersic]
1222
1223 if self.config.doSubSelectSources:
1224 numRowsNotUsed = len(fakeCat) - len(fakeCat['select'])
1225 self.log.info("Removing %d rows which were not designated as template sources", numRowsNotUsed)
1226 fakeCat = fakeCat[fakeCat['select']]
1227
1228 return fakeCat
1229
1230 def addFakeSources(self, image, fakeImages, sourceType):
1231 """Add the fake sources to the given image
1232
1233 Parameters
1234 ----------
1235 image : `lsst.afw.image.exposure.exposure.ExposureF`
1236 The image into which the fake sources should be added
1237 fakeImages : `typing.Iterator` [`tuple` ['lsst.afw.image.ImageF`, `lsst.geom.Point2d`]]
1238 An iterator of tuples that contains (or generates) images of fake sources,
1239 and the locations they are to be inserted at.
1240 sourceType : `str`
1241 The type (star/galaxy) of fake sources input
1242
1243 Returns
1244 -------
1245 image : `lsst.afw.image.exposure.exposure.ExposureF`
1246
1247 Notes
1248 -----
1249 Uses the x, y information in the ``fakeCat`` to position an image of the fake interpolated onto the
1250 pixel grid of the image. Sets the ``FAKE`` mask plane for the pixels added with the fake source.
1251 """
1252
1253 imageBBox = image.getBBox()
1254 imageMI = image.maskedImage
1255
1256 for (fakeImage, xy) in fakeImages:
1257 X0 = xy.getX() - fakeImage.getWidth()/2 + 0.5
1258 Y0 = xy.getY() - fakeImage.getHeight()/2 + 0.5
1259 self.log.debug("Adding fake source at %d, %d", xy.getX(), xy.getY())
1260 if sourceType == "galaxy":
1261 interpFakeImage = afwMath.offsetImage(fakeImage, X0, Y0, "lanczos3")
1262 else:
1263 interpFakeImage = fakeImage
1264
1265 interpFakeImBBox = interpFakeImage.getBBox()
1266 interpFakeImBBox.clip(imageBBox)
1267
1268 if interpFakeImBBox.getArea() > 0:
1269 imageMIView = imageMI[interpFakeImBBox]
1270 clippedFakeImage = interpFakeImage[interpFakeImBBox]
1271 clippedFakeImageMI = afwImage.MaskedImageF(clippedFakeImage)
1272 clippedFakeImageMI.mask.set(self.bitmask)
1273 imageMIView += clippedFakeImageMI
1274
1275 return image
A 2-dimensional celestial WCS that transform pixels to ICRS RA/Dec, using the LSST standard for pixel...
Definition: SkyWcs.h:117
A floating-point coordinate rectangle geometry.
Definition: Box.h:413
An integer coordinate rectangle.
Definition: Box.h:55
Point in an unspecified spherical coordinate system.
Definition: SpherePoint.h:57
std::shared_ptr< ImageT > offsetImage(ImageT const &image, float dx, float dy, std::string const &algorithmName="lanczos5", unsigned int buffer=0)
Return an image offset by (dx, dy) using the specified algorithm.
Definition: offsetImage.cc:41
def addPixCoords(self, fakeCat, image)
Definition: insertFakes.py:997
def mkFakeStars(self, fakeCat, band, photoCalib, psf, image)
def mkFakeGalsimGalaxies(self, fakeCat, band, photoCalib, pixelScale, psf, image)
def cleanCat(self, fakeCat, starCheckVal)
def processImagesForInsertion(self, fakeCat, wcs, psf, photoCalib, band, pixelScale)
Definition: insertFakes.py:910
def trimFakeCat(self, fakeCat, image)
def addFakeSources(self, image, fakeImages, sourceType)