LSST Applications g070148d5b3+33e5256705,g0d53e28543+25c8b88941,g0da5cf3356+2dd1178308,g1081da9e2a+62d12e78cb,g17e5ecfddb+7e422d6136,g1c76d35bf8+ede3a706f7,g295839609d+225697d880,g2e2c1a68ba+cc1f6f037e,g2ffcdf413f+853cd4dcde,g38293774b4+62d12e78cb,g3b44f30a73+d953f1ac34,g48ccf36440+885b902d19,g4b2f1765b6+7dedbde6d2,g5320a0a9f6+0c5d6105b6,g56b687f8c9+ede3a706f7,g5c4744a4d9+ef6ac23297,g5ffd174ac0+0c5d6105b6,g6075d09f38+66af417445,g667d525e37+2ced63db88,g670421136f+2ced63db88,g71f27ac40c+2ced63db88,g774830318a+463cbe8d1f,g7876bc68e5+1d137996f1,g7985c39107+62d12e78cb,g7fdac2220c+0fd8241c05,g96f01af41f+368e6903a7,g9ca82378b8+2ced63db88,g9d27549199+ef6ac23297,gabe93b2c52+e3573e3735,gb065e2a02a+3dfbe639da,gbc3249ced9+0c5d6105b6,gbec6a3398f+0c5d6105b6,gc9534b9d65+35b9f25267,gd01420fc67+0c5d6105b6,geee7ff78d7+a14128c129,gf63283c776+ede3a706f7,gfed783d017+0c5d6105b6,w.2022.47
LSST Data Management Base Package
Loading...
Searching...
No Matches
processCcdWithFakes.py
Go to the documentation of this file.
1# This file is part of pipe_tasks.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22"""
23Insert fake sources into calexps
24"""
25
26__all__ = ["ProcessCcdWithFakesConfig", "ProcessCcdWithFakesTask",
27 "ProcessCcdWithVariableFakesConfig", "ProcessCcdWithVariableFakesTask"]
28
29import numpy as np
30import pandas as pd
31
32import lsst.pex.config as pexConfig
33import lsst.pipe.base as pipeBase
34
35from .insertFakes import InsertFakesTask
36from lsst.afw.table import SourceTable
37from lsst.obs.base import ExposureIdInfo
38from lsst.pipe.base import PipelineTask, PipelineTaskConfig, PipelineTaskConnections
39import lsst.pipe.base.connectionTypes as cT
40import lsst.afw.table as afwTable
41from lsst.skymap import BaseSkyMap
42from lsst.pipe.tasks.calibrate import CalibrateTask
43
44
45class ProcessCcdWithFakesConnections(PipelineTaskConnections,
46 dimensions=("instrument", "visit", "detector"),
47 defaultTemplates={"coaddName": "deep",
48 "wcsName": "jointcal",
49 "photoCalibName": "jointcal",
50 "fakesType": "fakes_"}):
51 skyMap = cT.Input(
52 doc="Input definition of geometry/bbox and projection/wcs for "
53 "template exposures. Needed to test which tract to generate ",
54 name=BaseSkyMap.SKYMAP_DATASET_TYPE_NAME,
55 dimensions=("skymap",),
56 storageClass="SkyMap",
57 )
58
59 exposure = cT.Input(
60 doc="Exposure into which fakes are to be added.",
61 name="calexp",
62 storageClass="ExposureF",
63 dimensions=("instrument", "visit", "detector")
64 )
65
66 fakeCats = cT.Input(
67 doc="Set of catalogs of fake sources to draw inputs from. We "
68 "concatenate the tract catalogs for detectorVisits that cover "
69 "multiple tracts.",
70 name="{fakesType}fakeSourceCat",
71 storageClass="DataFrame",
72 dimensions=("tract", "skymap"),
73 deferLoad=True,
74 multiple=True,
75 )
76
77 externalSkyWcsTractCatalog = cT.Input(
78 doc=("Per-tract, per-visit wcs calibrations. These catalogs use the detector "
79 "id for the catalog id, sorted on id for fast lookup."),
80 name="{wcsName}SkyWcsCatalog",
81 storageClass="ExposureCatalog",
82 dimensions=("instrument", "visit", "tract", "skymap"),
83 deferLoad=True,
84 multiple=True,
85 )
86
87 externalSkyWcsGlobalCatalog = cT.Input(
88 doc=("Per-visit wcs calibrations computed globally (with no tract information). "
89 "These catalogs use the detector id for the catalog id, sorted on id for "
90 "fast lookup."),
91 name="{wcsName}SkyWcsCatalog",
92 storageClass="ExposureCatalog",
93 dimensions=("instrument", "visit"),
94 )
95
96 externalPhotoCalibTractCatalog = cT.Input(
97 doc=("Per-tract, per-visit photometric calibrations. These catalogs use the "
98 "detector id for the catalog id, sorted on id for fast lookup."),
99 name="{photoCalibName}PhotoCalibCatalog",
100 storageClass="ExposureCatalog",
101 dimensions=("instrument", "visit", "tract"),
102 deferLoad=True,
103 multiple=True,
104 )
105
106 externalPhotoCalibGlobalCatalog = cT.Input(
107 doc=("Per-visit photometric calibrations. These catalogs use the "
108 "detector id for the catalog id, sorted on id for fast lookup."),
109 name="{photoCalibName}PhotoCalibCatalog",
110 storageClass="ExposureCatalog",
111 dimensions=("instrument", "visit"),
112 )
113
114 icSourceCat = cT.Input(
115 doc="Catalog of calibration sources",
116 name="icSrc",
117 storageClass="SourceCatalog",
118 dimensions=("instrument", "visit", "detector")
119 )
120
121 sfdSourceCat = cT.Input(
122 doc="Catalog of calibration sources",
123 name="src",
124 storageClass="SourceCatalog",
125 dimensions=("instrument", "visit", "detector")
126 )
127
128 outputExposure = cT.Output(
129 doc="Exposure with fake sources added.",
130 name="{fakesType}calexp",
131 storageClass="ExposureF",
132 dimensions=("instrument", "visit", "detector")
133 )
134
135 outputCat = cT.Output(
136 doc="Source catalog produced in calibrate task with fakes also measured.",
137 name="{fakesType}src",
138 storageClass="SourceCatalog",
139 dimensions=("instrument", "visit", "detector"),
140 )
141
142 def __init__(self, *, config=None):
143 super().__init__(config=config)
144
145 if not config.doApplyExternalGlobalPhotoCalib:
146 self.inputs.remove("externalPhotoCalibGlobalCatalog")
147 if not config.doApplyExternalTractPhotoCalib:
148 self.inputs.remove("externalPhotoCalibTractCatalog")
149
150 if not config.doApplyExternalGlobalSkyWcs:
151 self.inputs.remove("externalSkyWcsGlobalCatalog")
152 if not config.doApplyExternalTractSkyWcs:
153 self.inputs.remove("externalSkyWcsTractCatalog")
154
155
156class ProcessCcdWithFakesConfig(PipelineTaskConfig,
157 pipelineConnections=ProcessCcdWithFakesConnections):
158 """Config for inserting fake sources
159
160 Notes
161 -----
162 The default column names are those from the UW sims database.
163 """
164
165 doApplyExternalGlobalPhotoCalib = pexConfig.Field(
166 dtype=bool,
167 default=False,
168 doc="Whether to apply an external photometric calibration via an "
169 "`lsst.afw.image.PhotoCalib` object. Uses the "
170 "`externalPhotoCalibName` config option to determine which "
171 "calibration to use. Uses a global calibration."
172 )
173
174 doApplyExternalTractPhotoCalib = pexConfig.Field(
175 dtype=bool,
176 default=False,
177 doc="Whether to apply an external photometric calibration via an "
178 "`lsst.afw.image.PhotoCalib` object. Uses the "
179 "`externalPhotoCalibName` config option to determine which "
180 "calibration to use. Uses a per tract calibration."
181 )
182
183 externalPhotoCalibName = pexConfig.ChoiceField(
184 doc="What type of external photo calib to use.",
185 dtype=str,
186 default="jointcal",
187 allowed={"jointcal": "Use jointcal_photoCalib",
188 "fgcm": "Use fgcm_photoCalib",
189 "fgcm_tract": "Use fgcm_tract_photoCalib"}
190 )
191
192 doApplyExternalGlobalSkyWcs = pexConfig.Field(
193 dtype=bool,
194 default=False,
195 doc="Whether to apply an external astrometric calibration via an "
196 "`lsst.afw.geom.SkyWcs` object. Uses the "
197 "`externalSkyWcsName` config option to determine which "
198 "calibration to use. Uses a global calibration."
199 )
200
201 doApplyExternalTractSkyWcs = pexConfig.Field(
202 dtype=bool,
203 default=False,
204 doc="Whether to apply an external astrometric calibration via an "
205 "`lsst.afw.geom.SkyWcs` object. Uses the "
206 "`externalSkyWcsName` config option to determine which "
207 "calibration to use. Uses a per tract calibration."
208 )
209
210 externalSkyWcsName = pexConfig.ChoiceField(
211 doc="What type of updated WCS calib to use.",
212 dtype=str,
213 default="jointcal",
214 allowed={"jointcal": "Use jointcal_wcs"}
215 )
216
217 coaddName = pexConfig.Field(
218 doc="The name of the type of coadd used",
219 dtype=str,
220 default="deep",
221 )
222
223 srcFieldsToCopy = pexConfig.ListField(
224 dtype=str,
225 default=("calib_photometry_reserved", "calib_photometry_used", "calib_astrometry_used",
226 "calib_psf_candidate", "calib_psf_used", "calib_psf_reserved"),
227 doc=("Fields to copy from the `src` catalog to the output catalog "
228 "for matching sources Any missing fields will trigger a "
229 "RuntimeError exception.")
230 )
231
232 matchRadiusPix = pexConfig.Field(
233 dtype=float,
234 default=3,
235 doc=("Match radius for matching icSourceCat objects to sourceCat objects (pixels)"),
236 )
237
238 doMatchVisit = pexConfig.Field(
239 dtype=bool,
240 default=False,
241 doc="Match visit to trim the fakeCat"
242 )
243
244 calibrate = pexConfig.ConfigurableField(target=CalibrateTask,
245 doc="The calibration task to use.")
246
247 insertFakes = pexConfig.ConfigurableField(target=InsertFakesTask,
248 doc="Configuration for the fake sources")
249
250 def setDefaults(self):
251 super().setDefaults()
252 self.calibrate.measurement.plugins["base_PixelFlags"].masksFpAnywhere.append("FAKE")
253 self.calibrate.measurement.plugins["base_PixelFlags"].masksFpCenter.append("FAKE")
254 self.calibrate.doAstrometry = False
255 self.calibrate.doWriteMatches = False
256 self.calibrate.doPhotoCal = False
257 self.calibrate.detection.reEstimateBackground = False
258
259
260class ProcessCcdWithFakesTask(PipelineTask):
261 """Insert fake objects into calexps.
262
263 Add fake stars and galaxies to the given calexp, specified in the dataRef. Galaxy parameters are read in
264 from the specified file and then modelled using galsim. Re-runs characterize image and calibrate image to
265 give a new background estimation and measurement of the calexp.
266
267 `ProcessFakeSourcesTask` inherits six functions from insertFakesTask that make images of the fake
268 sources and then add them to the calexp.
269
270 `addPixCoords`
271 Use the WCS information to add the pixel coordinates of each source
272 Adds an ``x`` and ``y`` column to the catalog of fake sources.
273 `trimFakeCat`
274 Trim the fake cat to about the size of the input image.
275 `mkFakeGalsimGalaxies`
276 Use Galsim to make fake double sersic galaxies for each set of galaxy parameters in the input file.
277 `mkFakeStars`
278 Use the PSF information from the calexp to make a fake star using the magnitude information from the
279 input file.
280 `cleanCat`
281 Remove rows of the input fake catalog which have half light radius, of either the bulge or the disk,
282 that are 0.
283 `addFakeSources`
284 Add the fake sources to the calexp.
285
286 Notes
287 -----
288 The ``calexp`` with fake souces added to it is written out as the datatype ``calexp_fakes``.
289 """
290
291 _DefaultName = "processCcdWithFakes"
292 ConfigClass = ProcessCcdWithFakesConfig
293
294 def __init__(self, schema=None, butler=None, **kwargs):
295 """Initalize things! This should go above in the class docstring
296 """
297
298 super().__init__(**kwargs)
299
300 if schema is None:
301 schema = SourceTable.makeMinimalSchema()
302 self.schema = schema
303 self.makeSubtask("insertFakes")
304 self.makeSubtask("calibrate")
305
306 def runQuantum(self, butlerQC, inputRefs, outputRefs):
307 inputs = butlerQC.get(inputRefs)
308 detectorId = inputs["exposure"].getInfo().getDetector().getId()
309
310 if 'exposureIdInfo' not in inputs.keys():
311 expId, expBits = butlerQC.quantum.dataId.pack("visit_detector", returnMaxBits=True)
312 inputs['exposureIdInfo'] = ExposureIdInfo(expId, expBits)
313
314 expWcs = inputs["exposure"].getWcs()
315 tractId = None
316 if not self.config.doApplyExternalGlobalSkyWcs and not self.config.doApplyExternalTractSkyWcs:
317 if expWcs is None:
318 self.log.info("No WCS for exposure %s so cannot insert fake sources. Skipping detector.",
319 butlerQC.quantum.dataId)
320 return None
321 else:
322 inputs["wcs"] = expWcs
323 elif self.config.doApplyExternalGlobalSkyWcs:
324 externalSkyWcsCatalog = inputs["externalSkyWcsGlobalCatalog"]
325 row = externalSkyWcsCatalog.find(detectorId)
326 if row is None:
327 self.log.info("No %s external global sky WCS for exposure %s so cannot insert fake "
328 "sources. Skipping detector.", self.config.externalSkyWcsName,
329 butlerQC.quantum.dataId)
330 return None
331 inputs["wcs"] = row.getWcs()
332 elif self.config.doApplyExternalTractSkyWcs:
333 externalSkyWcsCatalogList = inputs["externalSkyWcsTractCatalog"]
334 if tractId is None:
335 tractId = externalSkyWcsCatalogList[0].dataId["tract"]
336 externalSkyWcsCatalog = None
337 for externalSkyWcsCatalogRef in externalSkyWcsCatalogList:
338 if externalSkyWcsCatalogRef.dataId["tract"] == tractId:
339 externalSkyWcsCatalog = externalSkyWcsCatalogRef.get(
340 datasetType=self.config.connections.externalSkyWcsTractCatalog)
341 break
342 if externalSkyWcsCatalog is None:
343 usedTract = externalSkyWcsCatalogList[-1].dataId["tract"]
344 self.log.warn(
345 f"Warning, external SkyWcs for tract {tractId} not found. Using tract {usedTract} "
346 "instead.")
347 externalSkyWcsCatalog = externalSkyWcsCatalogList[-1].get(
348 datasetType=self.config.connections.externalSkyWcsTractCatalog)
349 row = externalSkyWcsCatalog.find(detectorId)
350 if row is None:
351 self.log.info("No %s external tract sky WCS for exposure %s so cannot insert fake "
352 "sources. Skipping detector.", self.config.externalSkyWcsName,
353 butlerQC.quantum.dataId)
354 return None
355 inputs["wcs"] = row.getWcs()
356
357 if not self.config.doApplyExternalGlobalPhotoCalib and not self.config.doApplyExternalTractPhotoCalib:
358 inputs["photoCalib"] = inputs["exposure"].getPhotoCalib()
359 elif self.config.doApplyExternalGlobalPhotoCalib:
360 externalPhotoCalibCatalog = inputs["externalPhotoCalibGlobalCatalog"]
361 row = externalPhotoCalibCatalog.find(detectorId)
362 if row is None:
363 self.log.info("No %s external global photoCalib for exposure %s so cannot insert fake "
364 "sources. Skipping detector.", self.config.externalPhotoCalibName,
365 butlerQC.quantum.dataId)
366 return None
367 inputs["photoCalib"] = row.getPhotoCalib()
368 elif self.config.doApplyExternalTractPhotoCalib:
369 externalPhotoCalibCatalogList = inputs["externalPhotoCalibTractCatalog"]
370 if tractId is None:
371 tractId = externalPhotoCalibCatalogList[0].dataId["tract"]
372 externalPhotoCalibCatalog = None
373 for externalPhotoCalibCatalogRef in externalPhotoCalibCatalogList:
374 if externalPhotoCalibCatalogRef.dataId["tract"] == tractId:
375 externalPhotoCalibCatalog = externalPhotoCalibCatalogRef.get(
376 datasetType=self.config.connections.externalPhotoCalibTractCatalog)
377 break
378 if externalPhotoCalibCatalog is None:
379 usedTract = externalPhotoCalibCatalogList[-1].dataId["tract"]
380 self.log.warn(
381 f"Warning, external PhotoCalib for tract {tractId} not found. Using tract {usedTract} "
382 "instead.")
383 externalPhotoCalibCatalog = externalPhotoCalibCatalogList[-1].get(
384 datasetType=self.config.connections.externalPhotoCalibTractCatalog)
385 row = externalPhotoCalibCatalog.find(detectorId)
386 if row is None:
387 self.log.info("No %s external tract photoCalib for exposure %s so cannot insert fake "
388 "sources. Skipping detector.", self.config.externalPhotoCalibName,
389 butlerQC.quantum.dataId)
390 return None
391 inputs["photoCalib"] = row.getPhotoCalib()
392
393 outputs = self.run(**inputs)
394 butlerQC.put(outputs, outputRefs)
395
396 def run(self, fakeCats, exposure, skyMap, wcs=None, photoCalib=None, exposureIdInfo=None,
397 icSourceCat=None, sfdSourceCat=None, externalSkyWcsGlobalCatalog=None,
398 externalSkyWcsTractCatalog=None, externalPhotoCalibGlobalCatalog=None,
399 externalPhotoCalibTractCatalog=None):
400 """Add fake sources to a calexp and then run detection, deblending and measurement.
401
402 Parameters
403 ----------
404 fakeCats : `list` of `lsst.daf.butler.DeferredDatasetHandle`
405 Set of tract level fake catalogs that potentially cover
406 this detectorVisit.
407 exposure : `lsst.afw.image.exposure.exposure.ExposureF`
408 The exposure to add the fake sources to
409 skyMap : `lsst.skymap.SkyMap`
410 SkyMap defining the tracts and patches the fakes are stored over.
412 WCS to use to add fake sources
413 photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`
414 Photometric calibration to be used to calibrate the fake sources
415 exposureIdInfo : `lsst.obs.base.ExposureIdInfo`
416 icSourceCat : `lsst.afw.table.SourceCatalog`
417 Default : None
418 Catalog to take the information about which sources were used for calibration from.
419 sfdSourceCat : `lsst.afw.table.SourceCatalog`
420 Default : None
421 Catalog produced by singleFrameDriver, needed to copy some calibration flags from.
422
423 Returns
424 -------
425 resultStruct : `lsst.pipe.base.struct.Struct`
426 contains : outputExposure : `lsst.afw.image.exposure.exposure.ExposureF`
427 outputCat : `lsst.afw.table.source.source.SourceCatalog`
428
429 Notes
430 -----
431 Adds pixel coordinates for each source to the fakeCat and removes objects with bulge or disk half
432 light radius = 0 (if ``config.cleanCat = True``). These columns are called ``x`` and ``y`` and are in
433 pixels.
434
435 Adds the ``Fake`` mask plane to the exposure which is then set by `addFakeSources` to mark where fake
436 sources have been added. Uses the information in the ``fakeCat`` to make fake galaxies (using galsim)
437 and fake stars, using the PSF models from the PSF information for the calexp. These are then added to
438 the calexp and the calexp with fakes included returned.
439
440 The galsim galaxies are made using a double sersic profile, one for the bulge and one for the disk,
441 this is then convolved with the PSF at that point.
442
443 If exposureIdInfo is not provided then the SourceCatalog IDs will not be globally unique.
444 """
445 fakeCat = self.composeFakeCat(fakeCats, skyMap)
446
447 if wcs is None:
448 wcs = exposure.getWcs()
449
450 if photoCalib is None:
451 photoCalib = exposure.getPhotoCalib()
452
453 if self.config.doMatchVisit:
454 fakeCat = self.getVisitMatchedFakeCat(fakeCat, exposure)
455
456 self.insertFakes.run(fakeCat, exposure, wcs, photoCalib)
457
458 # detect, deblend and measure sources
459 if exposureIdInfo is None:
460 exposureIdInfo = ExposureIdInfo()
461 returnedStruct = self.calibrate.run(exposure, exposureIdInfo=exposureIdInfo)
462 sourceCat = returnedStruct.sourceCat
463
464 sourceCat = self.copyCalibrationFields(sfdSourceCat, sourceCat, self.config.srcFieldsToCopy)
465
466 resultStruct = pipeBase.Struct(outputExposure=exposure, outputCat=sourceCat)
467 return resultStruct
468
469 def composeFakeCat(self, fakeCats, skyMap):
470 """Concatenate the fakeCats from tracts that may cover the exposure.
471
472 Parameters
473 ----------
474 fakeCats : `list` of `lst.daf.butler.DeferredDatasetHandle`
475 Set of fake cats to concatenate.
476 skyMap : `lsst.skymap.SkyMap`
477 SkyMap defining the geometry of the tracts and patches.
478
479 Returns
480 -------
481 combinedFakeCat : `pandas.DataFrame`
482 All fakes that cover the inner polygon of the tracts in this
483 quantum.
484 """
485 if len(fakeCats) == 1:
486 return fakeCats[0].get(
487 datasetType=self.config.connections.fakeCats)
488 outputCat = []
489 for fakeCatRef in fakeCats:
490 cat = fakeCatRef.get(
491 datasetType=self.config.connections.fakeCats)
492 tractId = fakeCatRef.dataId["tract"]
493 # Make sure all data is within the inner part of the tract.
494 outputCat.append(cat[
495 skyMap.findTractIdArray(cat[self.config.insertFakes.ra_col],
496 cat[self.config.insertFakes.dec_col],
497 degrees=False)
498 == tractId])
499
500 return pd.concat(outputCat)
501
502 def getVisitMatchedFakeCat(self, fakeCat, exposure):
503 """Trim the fakeCat to select particular visit
504
505 Parameters
506 ----------
507 fakeCat : `pandas.core.frame.DataFrame`
508 The catalog of fake sources to add to the exposure
509 exposure : `lsst.afw.image.exposure.exposure.ExposureF`
510 The exposure to add the fake sources to
511
512 Returns
513 -------
514 movingFakeCat : `pandas.DataFrame`
515 All fakes that belong to the visit
516 """
517 selected = exposure.getInfo().getVisitInfo().getId() == fakeCat["visit"]
518
519 return fakeCat[selected]
520
521 def copyCalibrationFields(self, calibCat, sourceCat, fieldsToCopy):
522 """Match sources in calibCat and sourceCat and copy the specified fields
523
524 Parameters
525 ----------
527 Catalog from which to copy fields.
528 sourceCat : `lsst.afw.table.SourceCatalog`
529 Catalog to which to copy fields.
530 fieldsToCopy : `lsst.pex.config.listField.List`
531 Fields to copy from calibCat to SoourceCat.
532
533 Returns
534 -------
536 Catalog which includes the copied fields.
537
538 The fields copied are those specified by `fieldsToCopy` that actually exist
539 in the schema of `calibCat`.
540
541 This version was based on and adapted from the one in calibrateTask.
542 """
543
544 # Make a new SourceCatalog with the data from sourceCat so that we can add the new columns to it
545 sourceSchemaMapper = afwTable.SchemaMapper(sourceCat.schema)
546 sourceSchemaMapper.addMinimalSchema(sourceCat.schema, True)
547
548 calibSchemaMapper = afwTable.SchemaMapper(calibCat.schema, sourceCat.schema)
549
550 # Add the desired columns from the option fieldsToCopy
551 missingFieldNames = []
552 for fieldName in fieldsToCopy:
553 if fieldName in calibCat.schema:
554 schemaItem = calibCat.schema.find(fieldName)
555 calibSchemaMapper.editOutputSchema().addField(schemaItem.getField())
556 schema = calibSchemaMapper.editOutputSchema()
557 calibSchemaMapper.addMapping(schemaItem.getKey(), schema.find(fieldName).getField())
558 else:
559 missingFieldNames.append(fieldName)
560 if missingFieldNames:
561 raise RuntimeError(f"calibCat is missing fields {missingFieldNames} specified in "
562 "fieldsToCopy")
563
564 if "calib_detected" not in calibSchemaMapper.getOutputSchema():
565 self.calibSourceKey = calibSchemaMapper.addOutputField(afwTable.Field["Flag"]("calib_detected",
566 "Source was detected as an icSource"))
567 else:
568 self.calibSourceKey = None
569
570 schema = calibSchemaMapper.getOutputSchema()
571 newCat = afwTable.SourceCatalog(schema)
572 newCat.reserve(len(sourceCat))
573 newCat.extend(sourceCat, sourceSchemaMapper)
574
575 # Set the aliases so it doesn't complain.
576 for k, v in sourceCat.schema.getAliasMap().items():
577 newCat.schema.getAliasMap().set(k, v)
578
579 select = newCat["deblend_nChild"] == 0
580 matches = afwTable.matchXy(newCat[select], calibCat, self.config.matchRadiusPix)
581 # Check that no sourceCat sources are listed twice (we already know
582 # that each match has a unique calibCat source ID, due to using
583 # that ID as the key in bestMatches)
584 numMatches = len(matches)
585 numUniqueSources = len(set(m[1].getId() for m in matches))
586 if numUniqueSources != numMatches:
587 self.log.warning("%d calibCat sources matched only %d sourceCat sources", numMatches,
588 numUniqueSources)
589
590 self.log.info("Copying flags from calibCat to sourceCat for %s sources", numMatches)
591
592 # For each match: set the calibSourceKey flag and copy the desired
593 # fields
594 for src, calibSrc, d in matches:
595 if self.calibSourceKey:
596 src.setFlag(self.calibSourceKey, True)
597 # src.assign copies the footprint from calibSrc, which we don't want
598 # (DM-407)
599 # so set calibSrc's footprint to src's footprint before src.assign,
600 # then restore it
601 calibSrcFootprint = calibSrc.getFootprint()
602 try:
603 calibSrc.setFootprint(src.getFootprint())
604 src.assign(calibSrc, calibSchemaMapper)
605 finally:
606 calibSrc.setFootprint(calibSrcFootprint)
607
608 return newCat
609
610
611class ProcessCcdWithVariableFakesConnections(ProcessCcdWithFakesConnections):
612 ccdVisitFakeMagnitudes = cT.Output(
613 doc="Catalog of fakes with magnitudes scattered for this ccdVisit.",
614 name="{fakesType}ccdVisitFakeMagnitudes",
615 storageClass="DataFrame",
616 dimensions=("instrument", "visit", "detector"),
617 )
618
619
620class ProcessCcdWithVariableFakesConfig(ProcessCcdWithFakesConfig,
621 pipelineConnections=ProcessCcdWithVariableFakesConnections):
622 scatterSize = pexConfig.RangeField(
623 dtype=float,
624 default=0.4,
625 min=0,
626 max=100,
627 doc="Amount of scatter to add to the visit magnitude for variable "
628 "sources."
629 )
630
631
632class ProcessCcdWithVariableFakesTask(ProcessCcdWithFakesTask):
633 """As ProcessCcdWithFakes except add variablity to the fakes catalog
634 magnitude in the observed band for this ccdVisit.
635
636 Additionally, write out the modified magnitudes to the Butler.
637 """
638
639 _DefaultName = "processCcdWithVariableFakes"
640 ConfigClass = ProcessCcdWithVariableFakesConfig
641
642 def run(self, fakeCats, exposure, skyMap, wcs=None, photoCalib=None, exposureIdInfo=None,
643 icSourceCat=None, sfdSourceCat=None):
644 """Add fake sources to a calexp and then run detection, deblending and measurement.
645
646 Parameters
647 ----------
648 fakeCat : `pandas.core.frame.DataFrame`
649 The catalog of fake sources to add to the exposure
650 exposure : `lsst.afw.image.exposure.exposure.ExposureF`
651 The exposure to add the fake sources to
652 skyMap : `lsst.skymap.SkyMap`
653 SkyMap defining the tracts and patches the fakes are stored over.
655 WCS to use to add fake sources
656 photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`
657 Photometric calibration to be used to calibrate the fake sources
658 exposureIdInfo : `lsst.obs.base.ExposureIdInfo`
659 icSourceCat : `lsst.afw.table.SourceCatalog`
660 Default : None
661 Catalog to take the information about which sources were used for calibration from.
662 sfdSourceCat : `lsst.afw.table.SourceCatalog`
663 Default : None
664 Catalog produced by singleFrameDriver, needed to copy some calibration flags from.
665
666 Returns
667 -------
668 resultStruct : `lsst.pipe.base.struct.Struct`
669 Results Strcut containing:
670
671 - outputExposure : Exposure with added fakes
672 (`lsst.afw.image.exposure.exposure.ExposureF`)
673 - outputCat : Catalog with detected fakes
674 (`lsst.afw.table.source.source.SourceCatalog`)
675 - ccdVisitFakeMagnitudes : Magnitudes that these fakes were
676 inserted with after being scattered (`pandas.DataFrame`)
677
678 Notes
679 -----
680 Adds pixel coordinates for each source to the fakeCat and removes objects with bulge or disk half
681 light radius = 0 (if ``config.cleanCat = True``). These columns are called ``x`` and ``y`` and are in
682 pixels.
683
684 Adds the ``Fake`` mask plane to the exposure which is then set by `addFakeSources` to mark where fake
685 sources have been added. Uses the information in the ``fakeCat`` to make fake galaxies (using galsim)
686 and fake stars, using the PSF models from the PSF information for the calexp. These are then added to
687 the calexp and the calexp with fakes included returned.
688
689 The galsim galaxies are made using a double sersic profile, one for the bulge and one for the disk,
690 this is then convolved with the PSF at that point.
691
692 If exposureIdInfo is not provided then the SourceCatalog IDs will not be globally unique.
693 """
694 fakeCat = self.composeFakeCat(fakeCats, skyMap)
695
696 if wcs is None:
697 wcs = exposure.getWcs()
698
699 if photoCalib is None:
700 photoCalib = exposure.getPhotoCalib()
701
702 if exposureIdInfo is None:
703 exposureIdInfo = ExposureIdInfo()
704
705 band = exposure.getFilter().bandLabel
706 ccdVisitMagnitudes = self.addVariablity(fakeCat, band, exposure, photoCalib, exposureIdInfo)
707
708 self.insertFakes.run(fakeCat, exposure, wcs, photoCalib)
709
710 # detect, deblend and measure sources
711 returnedStruct = self.calibrate.run(exposure, exposureIdInfo=exposureIdInfo)
712 sourceCat = returnedStruct.sourceCat
713
714 sourceCat = self.copyCalibrationFields(sfdSourceCat, sourceCat, self.config.srcFieldsToCopy)
715
716 resultStruct = pipeBase.Struct(outputExposure=exposure,
717 outputCat=sourceCat,
718 ccdVisitFakeMagnitudes=ccdVisitMagnitudes)
719 return resultStruct
720
721 def addVariablity(self, fakeCat, band, exposure, photoCalib, exposureIdInfo):
722 """Add scatter to the fake catalog visit magnitudes.
723
724 Currently just adds a simple Gaussian scatter around the static fake
725 magnitude. This function could be modified to return any number of
726 fake variability.
727
728 Parameters
729 ----------
730 fakeCat : `pandas.DataFrame`
731 Catalog of fakes to modify magnitudes of.
732 band : `str`
733 Current observing band to modify.
734 exposure : `lsst.afw.image.ExposureF`
735 Exposure fakes will be added to.
736 photoCalib : `lsst.afw.image.PhotoCalib`
737 Photometric calibration object of ``exposure``.
738 exposureIdInfo : `lsst.obs.base.ExposureIdInfo`
739 Exposure id information and metadata.
740
741 Returns
742 -------
743 dataFrame : `pandas.DataFrame`
744 DataFrame containing the values of the magnitudes to that will
745 be inserted into this ccdVisit.
746 """
747 expId = exposureIdInfo.expId
748 rng = np.random.default_rng(expId)
749 magScatter = rng.normal(loc=0,
750 scale=self.config.scatterSize,
751 size=len(fakeCat))
752 visitMagnitudes = fakeCat[self.insertFakes.config.mag_col % band] + magScatter
753 fakeCat.loc[:, self.insertFakes.config.mag_col % band] = visitMagnitudes
754 return pd.DataFrame(data={"variableMag": visitMagnitudes})
std::vector< SchemaItem< Flag > > * items
A 2-dimensional celestial WCS that transform pixels to ICRS RA/Dec, using the LSST standard for pixel...
Definition: SkyWcs.h:117
The photometric calibration of an exposure.
Definition: PhotoCalib.h:114
A mapping between the keys of two Schemas, used to copy data between them.
Definition: SchemaMapper.h:21
daf::base::PropertySet * set
Definition: fits.cc:927
SourceMatchVector matchXy(SourceCatalog const &cat1, SourceCatalog const &cat2, double radius, MatchControl const &mc=MatchControl())
Compute all tuples (s1,s2,d) where s1 belings to cat1, s2 belongs to cat2 and d, the distance between...
Definition: Match.cc:305
A description of a field in a table.
Definition: Field.h:24