22__all__ = [
"SnapPsfMatchConfigDF",
"SnapPsfMatchConfigAL",
"SnapPsfMatchConfig",
"SnapPsfMatchTask"]
25from .psfMatch
import PsfMatchConfigDF, PsfMatchConfigAL
26from .imagePsfMatch
import ImagePsfMatchTask, ImagePsfMatchConfig
30 """Delta-function Psf-matching config optimized for snap subtraction"""
33 PsfMatchConfigDF.setDefaults(self)
45 """Sum-of-Gaussian (Alard-Lupton) Psf-matching config optimized for snap subtraction"""
48 PsfMatchConfigAL.setDefaults(self)
57 kernel = pexConfig.ConfigChoiceField(
60 AL=SnapPsfMatchConfigAL,
61 DF=SnapPsfMatchConfigDF
66 doWarping = pexConfig.Field(
68 doc=
"Warp the snaps?",
73 ImagePsfMatchConfig.setDefaults(self)
89 """Image-based Psf-matching of two subsequent snaps from the same visit
93 This Task differs from ImagePsfMatchTask
in that it matches two Exposures assuming that the images have
94 been acquired very closely
in time. Under this assumption, the astrometric misalignments
and/
or
95 relative distortions should be within a pixel,
and the Psf-shapes should be very similar. As a
96 consequence, the default configurations
for this
class assume
a very simple solution.
98 - The spatial variation
in the kernel (SnapPsfMatchConfig.spatialKernelOrder)
is assumed to be zero
100 - With no spatial variation, we turn of the spatial
101 clipping loops (SnapPsfMatchConfig.spatialKernelClipping)
103 - The differential background
is not fit
for (SnapPsfMatchConfig.fitForBackground)
105 - The kernel
is expected to be appx.
106 a delta function,
and has a small size (SnapPsfMatchConfig.kernelSize)
108 The sub-configurations
for the Alard-Lupton (SnapPsfMatchConfigAL)
109 and delta-function (SnapPsfMatchConfigDF)
110 bases also are designed to generate a small, simple kernel.
114 Initialization
is the same
as base
class ImagePsfMatch.__init__,
115 with the difference being that the Task
's
116 ConfigClass is SnapPsfMatchConfig.
120 The Task
is only configured to have a subtractExposures method, which
in turn calls
121 ImagePsfMatchTask.subtractExposures.
123 Configuration parameters
125 See SnapPsfMatchConfig, which uses either SnapPsfMatchConfigDF
and SnapPsfMatchConfigAL
126 as its active configuration.
130 The ``pipetask`` command line interface supports a
131 flag --debug to
import @b debug.py
from your PYTHONPATH. The relevant contents of debug.py
132 for this Task include:
140 if name ==
"lsst.ip.diffim.psfMatch":
142 di.maskTransparency = 80
143 di.displayCandidates =
True
144 di.displayKernelBasis =
False
145 di.displayKernelMosaic =
True
146 di.plotKernelSpatialModel =
False
147 di.showBadCandidates =
True
148 elif name ==
"lsst.ip.diffim.imagePsfMatch":
150 di.maskTransparency = 30
151 di.displayTemplate =
True
152 di.displaySciIm =
True
153 di.displaySpatialCells =
True
154 di.displayDiffIm =
True
155 di.showBadCandidates =
True
156 elif name ==
"lsst.ip.diffim.diaCatalogSourceSelector":
158 di.maskTransparency = 30
159 di.displayExposure =
True
160 di.pauseAtEnd =
False
165 Note that
if you want addional logging info, you may add to your scripts:
169 import lsst.utils.logging
as logUtils
170 logUtils.trace_set_at(
"lsst.ip.diffim", 4)
174 This code
is snapPsfMatchTask.py
in the examples directory,
and can be run
as e.g.
178 examples/snapPsfMatchTask.py
179 examples/snapPsfMatchTask.py --debug
180 examples/snapPsfMatchTask.py --debug --template /path/to/templateExp.fits
181 --science /path/to/scienceExp.fits
183 First, create a subclass of SnapPsfMatchTask that accepts two exposures.
184 Ideally these exposures would have been taken back-to-back,
185 such that the pointing/background/Psf does
not vary substantially between the two:
190 def __init__(self, *args, **kwargs):
191 SnapPsfMatchTask.__init__(self, *args, **kwargs)
192 def run(self, templateExp, scienceExp):
195 And allow the user the freedom to either run the script
in default mode,
196 or point to their own images on disk. Note that these images must be
201 if __name__ ==
"__main__":
203 parser = argparse.ArgumentParser(description=
"Demonstrate the use of ImagePsfMatchTask")
204 parser.add_argument(
"--debug",
"-d", action=
"store_true", help=
"Load debug.py?", default=
False)
205 parser.add_argument(
"--template",
"-t", help=
"Template Exposure to use", default=
None)
206 parser.add_argument(
"--science",
"-s", help=
"Science Exposure to use", default=
None)
207 args = parser.parse_args()
209 We have enabled some minor display debugging
in this script via the –debug option. However,
210 if you have an lsstDebug debug.in your PYTHONPATH you will get additional debugging displays.
211 The following block checks
for this script
219 debug.lsstDebug.frame = 3
220 except ImportError
as e:
221 print(e, file=sys.stderr)
223 Finally, we call a run method that we define below.
224 First set up a Config
and choose the basis set to use:
232 config = SnapPsfMatchTask.ConfigClass()
233 config.doWarping =
True
234 config.kernel.name =
"AL"
236 Make sure the images (
if any) that were sent to the script exist on disk
and are readable.
237 If no images are sent, make some fake data up
for the sake of this example script
238 (have a look at the code
if you want more details on generateFakeImages;
239 as a detail of how the fake images were made, you do have to fit
for a differential background):
244 if args.template
is not None and args.science
is not None:
245 if not os.path.isfile(args.template):
246 raise FileNotFoundError(
"Template image %s does not exist" % (args.template))
247 if not os.path.isfile(args.science):
248 raise FileNotFoundError(
"Science image %s does not exist" % (args.science))
250 templateExp = afwImage.ExposureF(args.template)
251 except Exception
as e:
252 raise RuntimeError(
"Cannot read template image %s" % (args.template))
254 scienceExp = afwImage.ExposureF(args.science)
255 except Exception
as e:
256 raise RuntimeError(
"Cannot read science image %s" % (args.science))
258 templateExp, scienceExp = generateFakeImages()
259 config.kernel.active.fitForBackground =
True
260 config.kernel.active.spatialBgOrder = 0
261 config.kernel.active.sizeCellX = 128
262 config.kernel.active.sizeCellY = 128
264 Display the two images
if -debug
269 afwDisplay.Display(frame=1).mtv(templateExp, title=
"Example script: Input Template")
270 afwDisplay.Display(frame=2).mtv(scienceExp, title=
"Example script: Input Science Image")
272 Create
and run the Task
277 psfMatchTask = MySnapPsfMatchTask(config=config)
279 result = psfMatchTask.run(templateExp, scienceExp)
281 And
finally provide optional debugging display of the Psf-matched (via the Psf models) science image:
288 frame = debug.lsstDebug.frame + 1
291 afwDisplay.Display(frame=frame).mtv(result.matchedExposure,
292 title=
"Example script: Matched Template Image")
293 if "subtractedExposure" in result.getDict():
294 afwDisplay.Display(frame=frame + 1).mtv(result.subtractedExposure,
295 title=
"Example script: Subtracted Image")
299 ConfigClass = SnapPsfMatchConfig
303 templateFwhmPix=None, scienceFwhmPix=None,
305 return ImagePsfMatchTask.subtractExposures(self,
306 templateExposure=templateExposure,
307 scienceExposure=scienceExposure,
308 templateFwhmPix=templateFwhmPix,
309 scienceFwhmPix=scienceFwhmPix,
310 candidateList=candidateList,
311 doWarping=self.config.doWarping,
A class to contain the data, WCS, and other information needed to describe an image of the sky.
def __init__(self, *args, **kwargs)
def subtractExposures(self, templateExposure, scienceExposure, templateFwhmPix=None, scienceFwhmPix=None, candidateList=None, doWarping=True, convolveTemplate=True)
def subtractExposures(self, templateExposure, scienceExposure, templateFwhmPix=None, scienceFwhmPix=None, candidateList=None)