LSST Applications g070148d5b3+33e5256705,g0d53e28543+25c8b88941,g0da5cf3356+2dd1178308,g1081da9e2a+62d12e78cb,g17e5ecfddb+7e422d6136,g1c76d35bf8+ede3a706f7,g295839609d+225697d880,g2e2c1a68ba+cc1f6f037e,g2ffcdf413f+853cd4dcde,g38293774b4+62d12e78cb,g3b44f30a73+d953f1ac34,g48ccf36440+885b902d19,g4b2f1765b6+7dedbde6d2,g5320a0a9f6+0c5d6105b6,g56b687f8c9+ede3a706f7,g5c4744a4d9+ef6ac23297,g5ffd174ac0+0c5d6105b6,g6075d09f38+66af417445,g667d525e37+2ced63db88,g670421136f+2ced63db88,g71f27ac40c+2ced63db88,g774830318a+463cbe8d1f,g7876bc68e5+1d137996f1,g7985c39107+62d12e78cb,g7fdac2220c+0fd8241c05,g96f01af41f+368e6903a7,g9ca82378b8+2ced63db88,g9d27549199+ef6ac23297,gabe93b2c52+e3573e3735,gb065e2a02a+3dfbe639da,gbc3249ced9+0c5d6105b6,gbec6a3398f+0c5d6105b6,gc9534b9d65+35b9f25267,gd01420fc67+0c5d6105b6,geee7ff78d7+a14128c129,gf63283c776+ede3a706f7,gfed783d017+0c5d6105b6,w.2022.47
LSST Data Management Base Package
Loading...
Searching...
No Matches
utilities.py
Go to the documentation of this file.
1# This file is part of fgcmcal.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21"""Utility functions for fgcmcal.
22
23This file contains utility functions that are used by more than one task,
24and do not need to be part of a task.
25"""
26
27import numpy as np
28import os
29import re
30from deprecated.sphinx import deprecated
31
32from lsst.daf.base import PropertyList
33import lsst.afw.cameraGeom as afwCameraGeom
34import lsst.afw.table as afwTable
35import lsst.afw.image as afwImage
36import lsst.afw.math as afwMath
37import lsst.geom as geom
38from lsst.obs.base import createInitialSkyWcs
39from lsst.pipe.base import Instrument
40
41import fgcm
42
43
44FGCM_EXP_FIELD = 'VISIT'
45FGCM_CCD_FIELD = 'DETECTOR'
46FGCM_ILLEGAL_VALUE = -9999.0
47
48
49def makeConfigDict(config, log, camera, maxIter,
50 resetFitParameters, outputZeropoints,
51 lutFilterNames, tract=None):
52 """
53 Make the FGCM fit cycle configuration dict
54
55 Parameters
56 ----------
57 config: `lsst.fgcmcal.FgcmFitCycleConfig`
58 Configuration object
59 log: `lsst.log.Log`
60 LSST log object
62 Camera from the butler
63 maxIter: `int`
64 Maximum number of iterations
65 resetFitParameters: `bool`
66 Reset fit parameters before fitting?
67 outputZeropoints: `bool`
68 Compute zeropoints for output?
69 lutFilterNames : array-like, `str`
70 Array of physical filter names in the LUT.
71 tract: `int`, optional
72 Tract number for extending the output file name for debugging.
73 Default is None.
74
75 Returns
76 -------
77 configDict: `dict`
78 Configuration dictionary for fgcm
79 """
80 # Extract the bands that are _not_ being fit for fgcm configuration
81 notFitBands = [b for b in config.bands if b not in config.fitBands]
82
83 # process the starColorCuts
84 starColorCutList = []
85 for ccut in config.starColorCuts:
86 if ccut == 'NO_DATA':
87 # No color cuts to apply.
88 break
89 parts = ccut.split(',')
90 starColorCutList.append([parts[0], parts[1], float(parts[2]), float(parts[3])])
91
92 # process the refStarColorCuts
93 refStarColorCutList = []
94 for ccut in config.refStarColorCuts:
95 if ccut == 'NO_DATA':
96 # No color cuts to apply.
97 break
98 parts = ccut.split(',')
99 refStarColorCutList.append([parts[0], parts[1], float(parts[2]), float(parts[3])])
100
101 # TODO: Having direct access to the mirror area from the camera would be
102 # useful. See DM-16489.
103 # Mirror area in cm**2
104 mirrorArea = np.pi*(camera.telescopeDiameter*100./2.)**2.
105
106 # Get approximate average camera gain:
107 gains = [amp.getGain() for detector in camera for amp in detector.getAmplifiers()]
108 cameraGain = float(np.median(gains))
109
110 # Cut down the filter map to those that are in the LUT
111 filterToBand = {filterName: config.physicalFilterMap[filterName] for
112 filterName in lutFilterNames}
113
114 if tract is None:
115 outfileBase = config.outfileBase
116 else:
117 outfileBase = '%s-%06d' % (config.outfileBase, tract)
118
119 # create a configuration dictionary for fgcmFitCycle
120 configDict = {'outfileBase': outfileBase,
121 'logger': log,
122 'exposureFile': None,
123 'obsFile': None,
124 'indexFile': None,
125 'lutFile': None,
126 'mirrorArea': mirrorArea,
127 'cameraGain': cameraGain,
128 'ccdStartIndex': camera[0].getId(),
129 'expField': FGCM_EXP_FIELD,
130 'ccdField': FGCM_CCD_FIELD,
131 'seeingField': 'DELTA_APER',
132 'fwhmField': 'PSFSIGMA',
133 'skyBrightnessField': 'SKYBACKGROUND',
134 'deepFlag': 'DEEPFLAG', # unused
135 'bands': list(config.bands),
136 'fitBands': list(config.fitBands),
137 'notFitBands': notFitBands,
138 'requiredBands': list(config.requiredBands),
139 'filterToBand': filterToBand,
140 'logLevel': 'INFO',
141 'nCore': config.nCore,
142 'nStarPerRun': config.nStarPerRun,
143 'nExpPerRun': config.nExpPerRun,
144 'reserveFraction': config.reserveFraction,
145 'freezeStdAtmosphere': config.freezeStdAtmosphere,
146 'precomputeSuperStarInitialCycle': config.precomputeSuperStarInitialCycle,
147 'superStarSubCCDDict': dict(config.superStarSubCcdDict),
148 'superStarSubCCDChebyshevOrder': config.superStarSubCcdChebyshevOrder,
149 'superStarSubCCDTriangular': config.superStarSubCcdTriangular,
150 'superStarSigmaClip': config.superStarSigmaClip,
151 'focalPlaneSigmaClip': config.focalPlaneSigmaClip,
152 'ccdGraySubCCDDict': dict(config.ccdGraySubCcdDict),
153 'ccdGraySubCCDChebyshevOrder': config.ccdGraySubCcdChebyshevOrder,
154 'ccdGraySubCCDTriangular': config.ccdGraySubCcdTriangular,
155 'ccdGrayFocalPlaneDict': dict(config.ccdGrayFocalPlaneDict),
156 'ccdGrayFocalPlaneChebyshevOrder': config.ccdGrayFocalPlaneChebyshevOrder,
157 'ccdGrayFocalPlaneFitMinCcd': config.ccdGrayFocalPlaneFitMinCcd,
158 'cycleNumber': config.cycleNumber,
159 'maxIter': maxIter,
160 'deltaMagBkgOffsetPercentile': config.deltaMagBkgOffsetPercentile,
161 'deltaMagBkgPerCcd': config.deltaMagBkgPerCcd,
162 'UTBoundary': config.utBoundary,
163 'washMJDs': config.washMjds,
164 'epochMJDs': config.epochMjds,
165 'coatingMJDs': config.coatingMjds,
166 'minObsPerBand': config.minObsPerBand,
167 'latitude': config.latitude,
168 'defaultCameraOrientation': config.defaultCameraOrientation,
169 'brightObsGrayMax': config.brightObsGrayMax,
170 'minStarPerCCD': config.minStarPerCcd,
171 'minCCDPerExp': config.minCcdPerExp,
172 'maxCCDGrayErr': config.maxCcdGrayErr,
173 'minStarPerExp': config.minStarPerExp,
174 'minExpPerNight': config.minExpPerNight,
175 'expGrayInitialCut': config.expGrayInitialCut,
176 'expGrayPhotometricCutDict': dict(config.expGrayPhotometricCutDict),
177 'expGrayHighCutDict': dict(config.expGrayHighCutDict),
178 'expGrayRecoverCut': config.expGrayRecoverCut,
179 'expVarGrayPhotometricCutDict': dict(config.expVarGrayPhotometricCutDict),
180 'expGrayErrRecoverCut': config.expGrayErrRecoverCut,
181 'refStarSnMin': config.refStarSnMin,
182 'refStarOutlierNSig': config.refStarOutlierNSig,
183 'applyRefStarColorCuts': config.applyRefStarColorCuts,
184 'useExposureReferenceOffset': config.useExposureReferenceOffset,
185 'illegalValue': FGCM_ILLEGAL_VALUE, # internally used by fgcm.
186 'starColorCuts': starColorCutList,
187 'refStarColorCuts': refStarColorCutList,
188 'aperCorrFitNBins': config.aperCorrFitNBins,
189 'aperCorrInputSlopeDict': dict(config.aperCorrInputSlopeDict),
190 'sedBoundaryTermDict': config.sedboundaryterms.toDict()['data'],
191 'sedTermDict': config.sedterms.toDict()['data'],
192 'colorSplitBands': list(config.colorSplitBands),
193 'sigFgcmMaxErr': config.sigFgcmMaxErr,
194 'sigFgcmMaxEGrayDict': dict(config.sigFgcmMaxEGrayDict),
195 'ccdGrayMaxStarErr': config.ccdGrayMaxStarErr,
196 'approxThroughputDict': dict(config.approxThroughputDict),
197 'sigmaCalRange': list(config.sigmaCalRange),
198 'sigmaCalFitPercentile': list(config.sigmaCalFitPercentile),
199 'sigmaCalPlotPercentile': list(config.sigmaCalPlotPercentile),
200 'sigma0Phot': config.sigma0Phot,
201 'mapLongitudeRef': config.mapLongitudeRef,
202 'mapNSide': config.mapNSide,
203 'varNSig': 100.0, # Turn off 'variable star selection' which doesn't work yet
204 'varMinBand': 2,
205 'useRetrievedPwv': False,
206 'useNightlyRetrievedPwv': False,
207 'pwvRetrievalSmoothBlock': 25,
208 'useQuadraticPwv': config.useQuadraticPwv,
209 'useRetrievedTauInit': False,
210 'tauRetrievalMinCCDPerNight': 500,
211 'modelMagErrors': config.modelMagErrors,
212 'instrumentParsPerBand': config.instrumentParsPerBand,
213 'instrumentSlopeMinDeltaT': config.instrumentSlopeMinDeltaT,
214 'fitMirrorChromaticity': config.fitMirrorChromaticity,
215 'useRepeatabilityForExpGrayCutsDict': dict(config.useRepeatabilityForExpGrayCutsDict),
216 'autoPhotometricCutNSig': config.autoPhotometricCutNSig,
217 'autoHighCutNSig': config.autoHighCutNSig,
218 'deltaAperInnerRadiusArcsec': config.deltaAperInnerRadiusArcsec,
219 'deltaAperOuterRadiusArcsec': config.deltaAperOuterRadiusArcsec,
220 'deltaAperFitMinNgoodObs': config.deltaAperFitMinNgoodObs,
221 'deltaAperFitPerCcdNx': config.deltaAperFitPerCcdNx,
222 'deltaAperFitPerCcdNy': config.deltaAperFitPerCcdNy,
223 'deltaAperFitSpatialNside': config.deltaAperFitSpatialNside,
224 'doComputeDeltaAperExposures': config.doComputeDeltaAperPerVisit,
225 'doComputeDeltaAperStars': config.doComputeDeltaAperPerStar,
226 'doComputeDeltaAperMap': config.doComputeDeltaAperMap,
227 'doComputeDeltaAperPerCcd': config.doComputeDeltaAperPerCcd,
228 'printOnly': False,
229 'quietMode': config.quietMode,
230 'randomSeed': config.randomSeed,
231 'outputStars': False,
232 'outputPath': os.path.abspath('.'),
233 'clobber': True,
234 'useSedLUT': False,
235 'resetParameters': resetFitParameters,
236 'doPlots': config.doPlots,
237 'outputFgcmcalZpts': True, # when outputting zpts, use fgcmcal format
238 'outputZeropoints': outputZeropoints}
239
240 return configDict
241
242
243def translateFgcmLut(lutCat, physicalFilterMap):
244 """
245 Translate the FGCM look-up-table into an fgcm-compatible object
246
247 Parameters
248 ----------
250 Catalog describing the FGCM look-up table
251 physicalFilterMap: `dict`
252 Physical filter to band mapping
253
254 Returns
255 -------
256 fgcmLut: `lsst.fgcm.FgcmLut`
257 Lookup table for FGCM
258 lutIndexVals: `numpy.ndarray`
259 Numpy array with LUT index information for FGCM
260 lutStd: `numpy.ndarray`
261 Numpy array with LUT standard throughput values for FGCM
262
263 Notes
264 -----
265 After running this code, it is wise to `del lutCat` to clear the memory.
266 """
267
268 # first we need the lutIndexVals
269 lutFilterNames = np.array(lutCat[0]['physicalFilters'].split(','), dtype='U')
270 lutStdFilterNames = np.array(lutCat[0]['stdPhysicalFilters'].split(','), dtype='U')
271
272 # Note that any discrepancies between config values will raise relevant
273 # exceptions in the FGCM code.
274
275 lutIndexVals = np.zeros(1, dtype=[('FILTERNAMES', lutFilterNames.dtype.str,
276 lutFilterNames.size),
277 ('STDFILTERNAMES', lutStdFilterNames.dtype.str,
278 lutStdFilterNames.size),
279 ('PMB', 'f8', lutCat[0]['pmb'].size),
280 ('PMBFACTOR', 'f8', lutCat[0]['pmbFactor'].size),
281 ('PMBELEVATION', 'f8'),
282 ('LAMBDANORM', 'f8'),
283 ('PWV', 'f8', lutCat[0]['pwv'].size),
284 ('O3', 'f8', lutCat[0]['o3'].size),
285 ('TAU', 'f8', lutCat[0]['tau'].size),
286 ('ALPHA', 'f8', lutCat[0]['alpha'].size),
287 ('ZENITH', 'f8', lutCat[0]['zenith'].size),
288 ('NCCD', 'i4')])
289
290 lutIndexVals['FILTERNAMES'][:] = lutFilterNames
291 lutIndexVals['STDFILTERNAMES'][:] = lutStdFilterNames
292 lutIndexVals['PMB'][:] = lutCat[0]['pmb']
293 lutIndexVals['PMBFACTOR'][:] = lutCat[0]['pmbFactor']
294 lutIndexVals['PMBELEVATION'] = lutCat[0]['pmbElevation']
295 lutIndexVals['LAMBDANORM'] = lutCat[0]['lambdaNorm']
296 lutIndexVals['PWV'][:] = lutCat[0]['pwv']
297 lutIndexVals['O3'][:] = lutCat[0]['o3']
298 lutIndexVals['TAU'][:] = lutCat[0]['tau']
299 lutIndexVals['ALPHA'][:] = lutCat[0]['alpha']
300 lutIndexVals['ZENITH'][:] = lutCat[0]['zenith']
301 lutIndexVals['NCCD'] = lutCat[0]['nCcd']
302
303 # now we need the Standard Values
304 lutStd = np.zeros(1, dtype=[('PMBSTD', 'f8'),
305 ('PWVSTD', 'f8'),
306 ('O3STD', 'f8'),
307 ('TAUSTD', 'f8'),
308 ('ALPHASTD', 'f8'),
309 ('ZENITHSTD', 'f8'),
310 ('LAMBDARANGE', 'f8', 2),
311 ('LAMBDASTEP', 'f8'),
312 ('LAMBDASTD', 'f8', lutFilterNames.size),
313 ('LAMBDASTDFILTER', 'f8', lutStdFilterNames.size),
314 ('I0STD', 'f8', lutFilterNames.size),
315 ('I1STD', 'f8', lutFilterNames.size),
316 ('I10STD', 'f8', lutFilterNames.size),
317 ('I2STD', 'f8', lutFilterNames.size),
318 ('LAMBDAB', 'f8', lutFilterNames.size),
319 ('ATMLAMBDA', 'f8', lutCat[0]['atmLambda'].size),
320 ('ATMSTDTRANS', 'f8', lutCat[0]['atmStdTrans'].size)])
321 lutStd['PMBSTD'] = lutCat[0]['pmbStd']
322 lutStd['PWVSTD'] = lutCat[0]['pwvStd']
323 lutStd['O3STD'] = lutCat[0]['o3Std']
324 lutStd['TAUSTD'] = lutCat[0]['tauStd']
325 lutStd['ALPHASTD'] = lutCat[0]['alphaStd']
326 lutStd['ZENITHSTD'] = lutCat[0]['zenithStd']
327 lutStd['LAMBDARANGE'][:] = lutCat[0]['lambdaRange'][:]
328 lutStd['LAMBDASTEP'] = lutCat[0]['lambdaStep']
329 lutStd['LAMBDASTD'][:] = lutCat[0]['lambdaStd']
330 lutStd['LAMBDASTDFILTER'][:] = lutCat[0]['lambdaStdFilter']
331 lutStd['I0STD'][:] = lutCat[0]['i0Std']
332 lutStd['I1STD'][:] = lutCat[0]['i1Std']
333 lutStd['I10STD'][:] = lutCat[0]['i10Std']
334 lutStd['I2STD'][:] = lutCat[0]['i2Std']
335 lutStd['LAMBDAB'][:] = lutCat[0]['lambdaB']
336 lutStd['ATMLAMBDA'][:] = lutCat[0]['atmLambda'][:]
337 lutStd['ATMSTDTRANS'][:] = lutCat[0]['atmStdTrans'][:]
338
339 lutTypes = [row['luttype'] for row in lutCat]
340
341 # And the flattened look-up-table
342 lutFlat = np.zeros(lutCat[0]['lut'].size, dtype=[('I0', 'f4'),
343 ('I1', 'f4')])
344
345 lutFlat['I0'][:] = lutCat[lutTypes.index('I0')]['lut'][:]
346 lutFlat['I1'][:] = lutCat[lutTypes.index('I1')]['lut'][:]
347
348 lutDerivFlat = np.zeros(lutCat[0]['lut'].size, dtype=[('D_LNPWV', 'f4'),
349 ('D_O3', 'f4'),
350 ('D_LNTAU', 'f4'),
351 ('D_ALPHA', 'f4'),
352 ('D_SECZENITH', 'f4'),
353 ('D_LNPWV_I1', 'f4'),
354 ('D_O3_I1', 'f4'),
355 ('D_LNTAU_I1', 'f4'),
356 ('D_ALPHA_I1', 'f4'),
357 ('D_SECZENITH_I1', 'f4')])
358
359 for name in lutDerivFlat.dtype.names:
360 lutDerivFlat[name][:] = lutCat[lutTypes.index(name)]['lut'][:]
361
362 # The fgcm.FgcmLUT() class copies all the LUT information into special
363 # shared memory objects that will not blow up the memory usage when used
364 # with python multiprocessing. Once all the numbers are copied, the
365 # references to the temporary objects (lutCat, lutFlat, lutDerivFlat)
366 # will fall out of scope and can be cleaned up by the garbage collector.
367 fgcmLut = fgcm.FgcmLUT(lutIndexVals, lutFlat, lutDerivFlat, lutStd,
368 filterToBand=physicalFilterMap)
369
370 return fgcmLut, lutIndexVals, lutStd
371
372
373def translateVisitCatalog(visitCat):
374 """
375 Translate the FGCM visit catalog to an fgcm-compatible object
376
377 Parameters
378 ----------
380 FGCM visitCat from `lsst.fgcmcal.FgcmBuildStarsTask`
381
382 Returns
383 -------
384 fgcmExpInfo: `numpy.ndarray`
385 Numpy array for visit information for FGCM
386
387 Notes
388 -----
389 After running this code, it is wise to `del visitCat` to clear the memory.
390 """
391
392 fgcmExpInfo = np.zeros(len(visitCat), dtype=[('VISIT', 'i8'),
393 ('MJD', 'f8'),
394 ('EXPTIME', 'f8'),
395 ('PSFSIGMA', 'f8'),
396 ('DELTA_APER', 'f8'),
397 ('SKYBACKGROUND', 'f8'),
398 ('DEEPFLAG', 'i2'),
399 ('TELHA', 'f8'),
400 ('TELRA', 'f8'),
401 ('TELDEC', 'f8'),
402 ('TELROT', 'f8'),
403 ('PMB', 'f8'),
404 ('FILTERNAME', 'a50')])
405 fgcmExpInfo['VISIT'][:] = visitCat['visit']
406 fgcmExpInfo['MJD'][:] = visitCat['mjd']
407 fgcmExpInfo['EXPTIME'][:] = visitCat['exptime']
408 fgcmExpInfo['DEEPFLAG'][:] = visitCat['deepFlag']
409 fgcmExpInfo['TELHA'][:] = visitCat['telha']
410 fgcmExpInfo['TELRA'][:] = visitCat['telra']
411 fgcmExpInfo['TELDEC'][:] = visitCat['teldec']
412 fgcmExpInfo['TELROT'][:] = visitCat['telrot']
413 fgcmExpInfo['PMB'][:] = visitCat['pmb']
414 fgcmExpInfo['PSFSIGMA'][:] = visitCat['psfSigma']
415 fgcmExpInfo['DELTA_APER'][:] = visitCat['deltaAper']
416 fgcmExpInfo['SKYBACKGROUND'][:] = visitCat['skyBackground']
417 # Note that we have to go through asAstropy() to get a string
418 # array out of an afwTable. This is faster than a row-by-row loop.
419 fgcmExpInfo['FILTERNAME'][:] = visitCat.asAstropy()['physicalFilter']
420
421 return fgcmExpInfo
422
423
424@deprecated(reason="This method is no longer used in fgcmcal. It will be removed after v23.",
425 version="v23.0", category=FutureWarning)
426def computeCcdOffsets(camera, defaultOrientation):
427 """
428 Compute the CCD offsets in ra/dec and x/y space
429
430 Parameters
431 ----------
433 defaultOrientation: `float`
434 Default camera orientation (degrees)
435
436 Returns
437 -------
438 ccdOffsets: `numpy.ndarray`
439 Numpy array with ccd offset information for input to FGCM.
440 Angular units are degrees, and x/y units are pixels.
441 """
442 # TODO: DM-21215 will fully generalize to arbitrary camera orientations
443
444 # and we need to know the ccd offsets from the camera geometry
445 ccdOffsets = np.zeros(len(camera), dtype=[('CCDNUM', 'i4'),
446 ('DELTA_RA', 'f8'),
447 ('DELTA_DEC', 'f8'),
448 ('RA_SIZE', 'f8'),
449 ('DEC_SIZE', 'f8'),
450 ('X_SIZE', 'i4'),
451 ('Y_SIZE', 'i4')])
452
453 # Generate fake WCSs centered at 180/0 to avoid the RA=0/360 problem,
454 # since we are looking for relative positions
455 boresight = geom.SpherePoint(180.0*geom.degrees, 0.0*geom.degrees)
456
457 # TODO: DM-17597 will update testdata_jointcal so that the test data
458 # does not have nan as the boresight angle for HSC data. For the
459 # time being, there is this ungainly hack.
460 if camera.getName() == 'HSC' and np.isnan(defaultOrientation):
461 orientation = 270*geom.degrees
462 else:
463 orientation = defaultOrientation*geom.degrees
464 flipX = False
465
466 # Create a temporary visitInfo for input to createInitialSkyWcs
467 visitInfo = afwImage.VisitInfo(boresightRaDec=boresight,
468 boresightRotAngle=orientation,
469 rotType=afwImage.RotType.SKY)
470
471 for i, detector in enumerate(camera):
472 ccdOffsets['CCDNUM'][i] = detector.getId()
473
474 wcs = createInitialSkyWcs(visitInfo, detector, flipX)
475
476 detCenter = wcs.pixelToSky(detector.getCenter(afwCameraGeom.PIXELS))
477 ccdOffsets['DELTA_RA'][i] = (detCenter.getRa() - boresight.getRa()).asDegrees()
478 ccdOffsets['DELTA_DEC'][i] = (detCenter.getDec() - boresight.getDec()).asDegrees()
479
480 bbox = detector.getBBox()
481
482 detCorner1 = wcs.pixelToSky(geom.Point2D(bbox.getMin()))
483 detCorner2 = wcs.pixelToSky(geom.Point2D(bbox.getMax()))
484
485 ccdOffsets['RA_SIZE'][i] = np.abs((detCorner2.getRa() - detCorner1.getRa()).asDegrees())
486 ccdOffsets['DEC_SIZE'][i] = np.abs((detCorner2.getDec() - detCorner1.getDec()).asDegrees())
487
488 ccdOffsets['X_SIZE'][i] = bbox.getMaxX()
489 ccdOffsets['Y_SIZE'][i] = bbox.getMaxY()
490
491 return ccdOffsets
492
493
495 """
496 Compute the median pixel scale in the camera
497
498 Returns
499 -------
500 pixelScale: `float`
501 Average pixel scale (arcsecond) over the camera
502 """
503
504 boresight = geom.SpherePoint(180.0*geom.degrees, 0.0*geom.degrees)
505 orientation = 0.0*geom.degrees
506 flipX = False
507
508 # Create a temporary visitInfo for input to createInitialSkyWcs
509 visitInfo = afwImage.VisitInfo(boresightRaDec=boresight,
510 boresightRotAngle=orientation,
511 rotType=afwImage.RotType.SKY)
512
513 pixelScales = np.zeros(len(camera))
514 for i, detector in enumerate(camera):
515 wcs = createInitialSkyWcs(visitInfo, detector, flipX)
516 pixelScales[i] = wcs.getPixelScale().asArcseconds()
517
518 ok, = np.where(pixelScales > 0.0)
519 return np.median(pixelScales[ok])
520
521
522def computeApproxPixelAreaFields(camera):
523 """
524 Compute the approximate pixel area bounded fields from the camera
525 geometry.
526
527 Parameters
528 ----------
530
531 Returns
532 -------
533 approxPixelAreaFields: `dict`
534 Dictionary of approximate area fields, keyed with detector ID
535 """
536
537 areaScaling = 1. / computeReferencePixelScale(camera)**2.
538
539 # Generate fake WCSs centered at 180/0 to avoid the RA=0/360 problem,
540 # since we are looking for relative scales
541 boresight = geom.SpherePoint(180.0*geom.degrees, 0.0*geom.degrees)
542
543 flipX = False
544 # Create a temporary visitInfo for input to createInitialSkyWcs
545 # The orientation does not matter for the area computation
546 visitInfo = afwImage.VisitInfo(boresightRaDec=boresight,
547 boresightRotAngle=0.0*geom.degrees,
548 rotType=afwImage.RotType.SKY)
549
550 approxPixelAreaFields = {}
551
552 for i, detector in enumerate(camera):
553 key = detector.getId()
554
555 wcs = createInitialSkyWcs(visitInfo, detector, flipX)
556 bbox = detector.getBBox()
557
558 areaField = afwMath.PixelAreaBoundedField(bbox, wcs,
559 unit=geom.arcseconds, scaling=areaScaling)
560 approxAreaField = afwMath.ChebyshevBoundedField.approximate(areaField)
561
562 approxPixelAreaFields[key] = approxAreaField
563
564 return approxPixelAreaFields
565
566
567def makeZptSchema(superStarChebyshevSize, zptChebyshevSize):
568 """
569 Make the zeropoint schema
570
571 Parameters
572 ----------
573 superStarChebyshevSize: `int`
574 Length of the superstar chebyshev array
575 zptChebyshevSize: `int`
576 Length of the zeropoint chebyshev array
577
578 Returns
579 -------
580 zptSchema: `lsst.afw.table.schema`
581 """
582
583 zptSchema = afwTable.Schema()
584
585 zptSchema.addField('visit', type=np.int64, doc='Visit number')
586 zptSchema.addField('detector', type=np.int32, doc='Detector ID number')
587 zptSchema.addField('fgcmFlag', type=np.int32, doc=('FGCM flag value: '
588 '1: Photometric, used in fit; '
589 '2: Photometric, not used in fit; '
590 '4: Non-photometric, on partly photometric night; '
591 '8: Non-photometric, on non-photometric night; '
592 '16: No zeropoint could be determined; '
593 '32: Too few stars for reliable gray computation'))
594 zptSchema.addField('fgcmZpt', type=np.float64, doc='FGCM zeropoint (center of CCD)')
595 zptSchema.addField('fgcmZptErr', type=np.float64,
596 doc='Error on zeropoint, estimated from repeatability + number of obs')
597 zptSchema.addField('fgcmfZptChebXyMax', type='ArrayD', size=2,
598 doc='maximum x/maximum y to scale to apply chebyshev parameters')
599 zptSchema.addField('fgcmfZptCheb', type='ArrayD',
600 size=zptChebyshevSize,
601 doc='Chebyshev parameters (flattened) for zeropoint')
602 zptSchema.addField('fgcmfZptSstarCheb', type='ArrayD',
603 size=superStarChebyshevSize,
604 doc='Chebyshev parameters (flattened) for superStarFlat')
605 zptSchema.addField('fgcmI0', type=np.float64, doc='Integral of the passband')
606 zptSchema.addField('fgcmI10', type=np.float64, doc='Normalized chromatic integral')
607 zptSchema.addField('fgcmR0', type=np.float64,
608 doc='Retrieved i0 integral, estimated from stars (only for flag 1)')
609 zptSchema.addField('fgcmR10', type=np.float64,
610 doc='Retrieved i10 integral, estimated from stars (only for flag 1)')
611 zptSchema.addField('fgcmGry', type=np.float64,
612 doc='Estimated gray extinction relative to atmospheric solution; '
613 'only for fgcmFlag <= 4 (see fgcmFlag) ')
614 zptSchema.addField('fgcmDeltaChrom', type=np.float64,
615 doc='Mean chromatic correction for stars in this ccd; '
616 'only for fgcmFlag <= 4 (see fgcmFlag)')
617 zptSchema.addField('fgcmZptVar', type=np.float64, doc='Variance of zeropoint over ccd')
618 zptSchema.addField('fgcmTilings', type=np.float64,
619 doc='Number of photometric tilings used for solution for ccd')
620 zptSchema.addField('fgcmFpGry', type=np.float64,
621 doc='Average gray extinction over the full focal plane '
622 '(same for all ccds in a visit)')
623 zptSchema.addField('fgcmFpGryBlue', type=np.float64,
624 doc='Average gray extinction over the full focal plane '
625 'for 25% bluest stars')
626 zptSchema.addField('fgcmFpGryBlueErr', type=np.float64,
627 doc='Error on Average gray extinction over the full focal plane '
628 'for 25% bluest stars')
629 zptSchema.addField('fgcmFpGryRed', type=np.float64,
630 doc='Average gray extinction over the full focal plane '
631 'for 25% reddest stars')
632 zptSchema.addField('fgcmFpGryRedErr', type=np.float64,
633 doc='Error on Average gray extinction over the full focal plane '
634 'for 25% reddest stars')
635 zptSchema.addField('fgcmFpVar', type=np.float64,
636 doc='Variance of gray extinction over the full focal plane '
637 '(same for all ccds in a visit)')
638 zptSchema.addField('fgcmDust', type=np.float64,
639 doc='Gray dust extinction from the primary/corrector'
640 'at the time of the exposure')
641 zptSchema.addField('fgcmFlat', type=np.float64, doc='Superstarflat illumination correction')
642 zptSchema.addField('fgcmAperCorr', type=np.float64, doc='Aperture correction estimated by fgcm')
643 zptSchema.addField('fgcmDeltaMagBkg', type=np.float64,
644 doc=('Local background correction from brightest percentile '
645 '(value set by deltaMagBkgOffsetPercentile) calibration '
646 'stars.'))
647 zptSchema.addField('exptime', type=np.float32, doc='Exposure time')
648 zptSchema.addField('filtername', type=str, size=10, doc='Filter name')
649
650 return zptSchema
651
652
653def makeZptCat(zptSchema, zpStruct):
654 """
655 Make the zeropoint catalog for persistence
656
657 Parameters
658 ----------
659 zptSchema: `lsst.afw.table.Schema`
660 Zeropoint catalog schema
661 zpStruct: `numpy.ndarray`
662 Zeropoint structure from fgcm
663
664 Returns
665 -------
666 zptCat: `afwTable.BaseCatalog`
667 Zeropoint catalog for persistence
668 """
669
670 zptCat = afwTable.BaseCatalog(zptSchema)
671 zptCat.reserve(zpStruct.size)
672
673 for filterName in zpStruct['FILTERNAME']:
674 rec = zptCat.addNew()
675 rec['filtername'] = filterName.decode('utf-8')
676
677 zptCat['visit'][:] = zpStruct[FGCM_EXP_FIELD]
678 zptCat['detector'][:] = zpStruct[FGCM_CCD_FIELD]
679 zptCat['fgcmFlag'][:] = zpStruct['FGCM_FLAG']
680 zptCat['fgcmZpt'][:] = zpStruct['FGCM_ZPT']
681 zptCat['fgcmZptErr'][:] = zpStruct['FGCM_ZPTERR']
682 zptCat['fgcmfZptChebXyMax'][:, :] = zpStruct['FGCM_FZPT_XYMAX']
683 zptCat['fgcmfZptCheb'][:, :] = zpStruct['FGCM_FZPT_CHEB']
684 zptCat['fgcmfZptSstarCheb'][:, :] = zpStruct['FGCM_FZPT_SSTAR_CHEB']
685 zptCat['fgcmI0'][:] = zpStruct['FGCM_I0']
686 zptCat['fgcmI10'][:] = zpStruct['FGCM_I10']
687 zptCat['fgcmR0'][:] = zpStruct['FGCM_R0']
688 zptCat['fgcmR10'][:] = zpStruct['FGCM_R10']
689 zptCat['fgcmGry'][:] = zpStruct['FGCM_GRY']
690 zptCat['fgcmDeltaChrom'][:] = zpStruct['FGCM_DELTACHROM']
691 zptCat['fgcmZptVar'][:] = zpStruct['FGCM_ZPTVAR']
692 zptCat['fgcmTilings'][:] = zpStruct['FGCM_TILINGS']
693 zptCat['fgcmFpGry'][:] = zpStruct['FGCM_FPGRY']
694 zptCat['fgcmFpGryBlue'][:] = zpStruct['FGCM_FPGRY_CSPLIT'][:, 0]
695 zptCat['fgcmFpGryBlueErr'][:] = zpStruct['FGCM_FPGRY_CSPLITERR'][:, 0]
696 zptCat['fgcmFpGryRed'][:] = zpStruct['FGCM_FPGRY_CSPLIT'][:, 2]
697 zptCat['fgcmFpGryRedErr'][:] = zpStruct['FGCM_FPGRY_CSPLITERR'][:, 2]
698 zptCat['fgcmFpVar'][:] = zpStruct['FGCM_FPVAR']
699 zptCat['fgcmDust'][:] = zpStruct['FGCM_DUST']
700 zptCat['fgcmFlat'][:] = zpStruct['FGCM_FLAT']
701 zptCat['fgcmAperCorr'][:] = zpStruct['FGCM_APERCORR']
702 zptCat['fgcmDeltaMagBkg'][:] = zpStruct['FGCM_DELTAMAGBKG']
703 zptCat['exptime'][:] = zpStruct['EXPTIME']
704
705 return zptCat
706
707
709 """
710 Make the atmosphere schema
711
712 Returns
713 -------
714 atmSchema: `lsst.afw.table.Schema`
715 """
716
717 atmSchema = afwTable.Schema()
718
719 atmSchema.addField('visit', type=np.int32, doc='Visit number')
720 atmSchema.addField('pmb', type=np.float64, doc='Barometric pressure (mb)')
721 atmSchema.addField('pwv', type=np.float64, doc='Water vapor (mm)')
722 atmSchema.addField('tau', type=np.float64, doc='Aerosol optical depth')
723 atmSchema.addField('alpha', type=np.float64, doc='Aerosol slope')
724 atmSchema.addField('o3', type=np.float64, doc='Ozone (dobson)')
725 atmSchema.addField('secZenith', type=np.float64, doc='Secant(zenith) (~ airmass)')
726 atmSchema.addField('cTrans', type=np.float64, doc='Transmission correction factor')
727 atmSchema.addField('lamStd', type=np.float64, doc='Wavelength for transmission correction')
728
729 return atmSchema
730
731
732def makeAtmCat(atmSchema, atmStruct):
733 """
734 Make the atmosphere catalog for persistence
735
736 Parameters
737 ----------
738 atmSchema: `lsst.afw.table.Schema`
739 Atmosphere catalog schema
740 atmStruct: `numpy.ndarray`
741 Atmosphere structure from fgcm
742
743 Returns
744 -------
746 Atmosphere catalog for persistence
747 """
748
749 atmCat = afwTable.BaseCatalog(atmSchema)
750 atmCat.resize(atmStruct.size)
751
752 atmCat['visit'][:] = atmStruct['VISIT']
753 atmCat['pmb'][:] = atmStruct['PMB']
754 atmCat['pwv'][:] = atmStruct['PWV']
755 atmCat['tau'][:] = atmStruct['TAU']
756 atmCat['alpha'][:] = atmStruct['ALPHA']
757 atmCat['o3'][:] = atmStruct['O3']
758 atmCat['secZenith'][:] = atmStruct['SECZENITH']
759 atmCat['cTrans'][:] = atmStruct['CTRANS']
760 atmCat['lamStd'][:] = atmStruct['LAMSTD']
761
762 return atmCat
763
764
765def makeStdSchema(nBands):
766 """
767 Make the standard star schema
768
769 Parameters
770 ----------
771 nBands: `int`
772 Number of bands in standard star catalog
773
774 Returns
775 -------
776 stdSchema: `lsst.afw.table.Schema`
777 """
778
779 stdSchema = afwTable.SimpleTable.makeMinimalSchema()
780 stdSchema.addField('ngood', type='ArrayI', doc='Number of good observations',
781 size=nBands)
782 stdSchema.addField('ntotal', type='ArrayI', doc='Number of total observations',
783 size=nBands)
784 stdSchema.addField('mag_std_noabs', type='ArrayF',
785 doc='Standard magnitude (no absolute calibration)',
786 size=nBands)
787 stdSchema.addField('magErr_std', type='ArrayF',
788 doc='Standard magnitude error',
789 size=nBands)
790 stdSchema.addField('npsfcand', type='ArrayI',
791 doc='Number of observations flagged as psf candidates',
792 size=nBands)
793 stdSchema.addField('delta_aper', type='ArrayF',
794 doc='Delta mag (small - large aperture)',
795 size=nBands)
796
797 return stdSchema
798
799
800def makeStdCat(stdSchema, stdStruct, goodBands):
801 """
802 Make the standard star catalog for persistence
803
804 Parameters
805 ----------
806 stdSchema: `lsst.afw.table.Schema`
807 Standard star catalog schema
808 stdStruct: `numpy.ndarray`
809 Standard star structure in FGCM format
810 goodBands: `list`
811 List of good band names used in stdStruct
812
813 Returns
814 -------
816 Standard star catalog for persistence
817 """
818
819 stdCat = afwTable.SimpleCatalog(stdSchema)
820 stdCat.resize(stdStruct.size)
821
822 stdCat['id'][:] = stdStruct['FGCM_ID']
823 stdCat['coord_ra'][:] = stdStruct['RA'] * geom.degrees
824 stdCat['coord_dec'][:] = stdStruct['DEC'] * geom.degrees
825 stdCat['ngood'][:, :] = stdStruct['NGOOD'][:, :]
826 stdCat['ntotal'][:, :] = stdStruct['NTOTAL'][:, :]
827 stdCat['mag_std_noabs'][:, :] = stdStruct['MAG_STD'][:, :]
828 stdCat['magErr_std'][:, :] = stdStruct['MAGERR_STD'][:, :]
829 stdCat['npsfcand'][:, :] = stdStruct['NPSFCAND'][:, :]
830 stdCat['delta_aper'][:, :] = stdStruct['DELTA_APER'][:, :]
831
832 md = PropertyList()
833 md.set("BANDS", list(goodBands))
834 stdCat.setMetadata(md)
835
836 return stdCat
837
838
839def computeApertureRadiusFromName(fluxField):
840 """
841 Compute the radius associated with a CircularApertureFlux or ApFlux field.
842
843 Parameters
844 ----------
845 fluxField : `str`
846 CircularApertureFlux or ApFlux
847
848 Returns
849 -------
850 apertureRadius : `float`
851 Radius of the aperture field, in pixels.
852
853 Raises
854 ------
855 RuntimeError: Raised if flux field is not a CircularApertureFlux,
856 ApFlux, or apFlux.
857 """
858 # TODO: Move this method to more general stack method in DM-25775
859 m = re.search(r'(CircularApertureFlux|ApFlux|apFlux)_(\d+)_(\d+)_', fluxField)
860
861 if m is None:
862 raise RuntimeError(f"Flux field {fluxField} does not correspond to a CircularApertureFlux or ApFlux")
863
864 apertureRadius = float(m.groups()[1]) + float(m.groups()[2])/10.
865
866 return apertureRadius
867
868
869def extractReferenceMags(refStars, bands, filterMap):
870 """
871 Extract reference magnitudes from refStars for given bands and
872 associated filterMap.
873
874 Parameters
875 ----------
876 refStars : `lsst.afw.table.BaseCatalog`
877 FGCM reference star catalog
878 bands : `list`
879 List of bands for calibration
880 filterMap: `dict`
881 FGCM mapping of filter to band
882
883 Returns
884 -------
885 refMag : `np.ndarray`
886 nstar x nband array of reference magnitudes
887 refMagErr : `np.ndarray`
888 nstar x nband array of reference magnitude errors
889 """
890 # After DM-23331 fgcm reference catalogs have FILTERNAMES to prevent
891 # against index errors and allow more flexibility in fitting after
892 # the build stars step.
893
894 md = refStars.getMetadata()
895 if 'FILTERNAMES' in md:
896 filternames = md.getArray('FILTERNAMES')
897
898 # The reference catalog that fgcm wants has one entry per band
899 # in the config file
900 refMag = np.zeros((len(refStars), len(bands)),
901 dtype=refStars['refMag'].dtype) + 99.0
902 refMagErr = np.zeros_like(refMag) + 99.0
903 for i, filtername in enumerate(filternames):
904 # We are allowed to run the fit configured so that we do not
905 # use every column in the reference catalog.
906 try:
907 band = filterMap[filtername]
908 except KeyError:
909 continue
910 try:
911 ind = bands.index(band)
912 except ValueError:
913 continue
914
915 refMag[:, ind] = refStars['refMag'][:, i]
916 refMagErr[:, ind] = refStars['refMagErr'][:, i]
917
918 else:
919 # Continue to use old catalogs as before.
920 refMag = refStars['refMag'][:, :]
921 refMagErr = refStars['refMagErr'][:, :]
922
923 return refMag, refMagErr
924
925
926def lookupStaticCalibrations(datasetType, registry, quantumDataId, collections):
927 instrument = Instrument.fromName(quantumDataId["instrument"], registry)
928 unboundedCollection = instrument.makeUnboundedCalibrationRunName()
929
930 return registry.queryDatasets(datasetType,
931 dataId=quantumDataId,
932 collections=[unboundedCollection])
An immutable representation of a camera.
Definition: Camera.h:43
Information about a single exposure of an imaging camera.
Definition: VisitInfo.h:68
A BoundedField that evaluate the pixel area of a SkyWcs in angular units.
Defines the fields and offsets for a table.
Definition: Schema.h:51
Custom catalog class for record/table subclasses that are guaranteed to have an ID,...
Definition: SortedCatalog.h:42
Class for storing ordered metadata with comments.
Definition: PropertyList.h:68
Point in an unspecified spherical coordinate system.
Definition: SpherePoint.h:57
This static class includes a variety of methods for interacting with the the logging module.
Definition: Log.h:724
daf::base::PropertyList * list
Definition: fits.cc:928
def computeReferencePixelScale(camera)
Definition: utilities.py:494
def computeCcdOffsets(camera, defaultOrientation)
Definition: utilities.py:426