32 """!Configuration for propagating flags to coadd"""
33 flags = DictField(keytype=str, itemtype=float,
34 default={
"calib_psfCandidate": 0.2,
"calib_psfUsed": 0.2,},
35 doc=
"Source catalog flags to propagate, with the threshold of relative occurrence.")
36 matchRadius = Field(dtype=float, default=0.2, doc=
"Source matching radius (arcsec)")
47 """!Task to propagate flags from single-frame measurements to coadd measurements
49 \anchor PropagateVisitFlagsTask_
51 \brief Propagate flags from individual visit measurements to coadd measurements
53 \section pipe_tasks_propagateVisitFlagsTask_Contents Contents
55 - \ref pipe_tasks_propagateVisitFlagsTask_Description
56 - \ref pipe_tasks_propagateVisitFlagsTask_Initialization
57 - \ref pipe_tasks_propagateVisitFlagsTask_Config
58 - \ref pipe_tasks_propagateVisitFlagsTask_Use
59 - \ref pipe_tasks_propagateVisitFlagsTask_Example
61 \section pipe_tasks_propagateVisitFlagsTask_Description Description
63 \copybrief PropagateVisitFlagsTask
65 We want to be able to set a flag for sources on the coadds using flags
66 that were determined from the individual visits. A common example is sources
67 that were used for PSF determination, since we do not do any PSF determination
68 on the coadd but use the individual visits. This requires matching the coadd
69 source catalog to each of the catalogs from the inputs (see
70 PropagateVisitFlagsConfig.matchRadius), and thresholding on the number of
71 times a source is flagged on the input catalog.
73 An important consideration in this is that the flagging of sources in the
74 individual visits can be somewhat stochastic, e.g., the same stars may not
75 always be used for PSF determination because the field of view moves slightly
76 between visits, or the seeing changed. We there threshold on the relative
77 occurrence of the flag in the visits (see PropagateVisitFlagsConfig.flags).
78 Flagging a source that is always flagged in inputs corresponds to a threshold
79 of 1, while flagging a source that is flagged in any of the input corresponds
80 to a threshold of 0. But neither of these extrema are really useful in
83 Setting the threshold too high means that sources that are not consistently
84 flagged (e.g., due to chip gaps) will not have the flag propagated. Setting
85 that threshold too low means that random sources which are falsely flagged in
86 the inputs will start to dominate. If in doubt, we suggest making this
87 threshold relatively low, but not zero (e.g., 0.1 to 0.2 or so). The more
88 confidence in the quality of the flagging, the lower the threshold can be.
90 The relative occurrence accounts for the edge of the field-of-view of the
91 camera, but does not include chip gaps, bad or saturated pixels, etc.
93 \section pipe_tasks_propagateVisitFlagsTask_Initialization Initialization
95 Beyond the usual Task initialization, PropagateVisitFlagsTask also requires
96 a schema for the catalog that is being constructed.
98 \section pipe_tasks_propagateVisitFlagsTask_Config Configuration parameters
100 See \ref PropagateVisitFlagsConfig
102 \section pipe_tasks_propagateVisitFlagsTask_Use Use
104 The 'run' method (described below) is the entry-point for operations. The
105 'getCcdInputs' staticmethod is provided as a convenience for retrieving the
106 'ccdInputs' (CCD inputs table) from an Exposure.
110 \section pipe_tasks_propagateVisitFlagsTask_Example Example
114 # * butler: data butler, for retrieving the CCD catalogs
115 # * coaddCatalog: catalog of source measurements on the coadd (lsst.afw.table.SourceCatalog)
116 # * coaddExposure: coadd (lsst.afw.image.Exposure)
117 from lsst.pipe.tasks.propagateVisitFlags import PropagateVisitFlagsTask, PropagateVisitFlagsConfig
118 config = PropagateVisitFlagsConfig()
119 config.flags["calib.psf.used"] = 0.3 # Relative threshold for this flag
120 config.matchRadius = 0.5 # Matching radius in arcsec
121 task = PropagateVisitFlagsTask(coaddCatalog.schema, config=config)
122 ccdInputs = task.getCcdInputs(coaddExposure)
123 task.run(butler, coaddCatalog, ccdInputs, coaddExposure.getWcs())
126 ConfigClass = PropagateVisitFlagsConfig
129 Task.__init__(self, **kwargs)
131 self.
_keys = dict((f, self.schema.addField(f, type=
"Flag", doc=
"Propagated from visits"))
for
132 f
in self.config.flags)
136 """!Convenience method to retrieve the CCD inputs table from a coadd exposure"""
137 return coaddExposure.getInfo().getCoaddInputs().ccds
139 def run(self, butler, coaddSources, ccdInputs, coaddWcs):
140 """!Propagate flags from individual visit measurements to coadd
142 This requires matching the coadd source catalog to each of the catalogs
143 from the inputs, and thresholding on the number of times a source is
144 flagged on the input catalog. The threshold is made on the relative
145 occurrence of the flag in each source. Flagging a source that is always
146 flagged in inputs corresponds to a threshold of 1, while flagging a
147 source that is flagged in any of the input corresponds to a threshold of
148 0. But neither of these extrema are really useful in practise.
150 Setting the threshold too high means that sources that are not consistently
151 flagged (e.g., due to chip gaps) will not have the flag propagated. Setting
152 that threshold too low means that random sources which are falsely flagged in
153 the inputs will start to dominate. If in doubt, we suggest making this threshold
154 relatively low, but not zero (e.g., 0.1 to 0.2 or so). The more confidence in
155 the quality of the flagging, the lower the threshold can be.
157 The relative occurrence accounts for the edge of the field-of-view of
158 the camera, but does not include chip gaps, bad or saturated pixels, etc.
160 @param[in] butler Data butler, for retrieving the input source catalogs
161 @param[in,out] coaddSources Source catalog from the coadd
162 @param[in] ccdInputs Table of CCDs that contribute to the coadd
163 @param[in] coaddWcs Wcs for coadd
165 if len(self.config.flags) == 0:
168 flags = self._keys.keys()
169 visitKey = ccdInputs.schema.find(
"visit").key
170 ccdKey = ccdInputs.schema.find(
"ccd").key
171 radius = self.config.matchRadius*afwGeom.arcseconds
173 self.log.info(
"Propagating flags %s from inputs" % (flags,))
175 counts = dict((f, numpy.zeros(len(coaddSources), dtype=int))
for f
in flags)
176 indices = numpy.array([s.getId()
for s
in coaddSources])
179 for ccdRecord
in ccdInputs:
180 v = ccdRecord.get(visitKey)
181 c = ccdRecord.get(ccdKey)
182 ccdSources = butler.get(
"src", visit=int(v), ccd=int(c), immediate=
True)
183 for sourceRecord
in ccdSources:
184 sourceRecord.updateCoord(ccdRecord.getWcs())
190 matches =
afwTable.matchRaDec(coaddSources, ccdSources[ccdSources.get(flag)], radius,
False)
192 index = (numpy.where(indices == m.first.getId()))[0][0]
193 counts[flag][index] += 1
198 for s, num
in zip(coaddSources, counts[f]):
199 numOverlaps = len(ccdInputs.subsetContaining(s.getCentroid(), coaddWcs,
True))
200 s.setFlag(key, bool(num > numOverlaps*self.config.flags[f]))
201 self.log.info(
"Propagated %d sources with flag %s" % (sum(s.get(key)
for s
in coaddSources), f))
std::vector< Match< typename Cat::Record, typename Cat::Record > > matchRaDec(Cat const &cat, Angle radius, bool symmetric)
Task to propagate flags from single-frame measurements to coadd measurements.
Configuration for propagating flags to coadd.
def getCcdInputs
Convenience method to retrieve the CCD inputs table from a coadd exposure.
def run
Propagate flags from individual visit measurements to coadd.