1 from builtins
import zip
33 """!Configuration for propagating flags to coadd"""
34 flags = DictField(keytype=str, itemtype=float,
35 default={
"calib_psfCandidate": 0.2,
"calib_psfUsed": 0.2, },
36 doc=
"Source catalog flags to propagate, with the threshold of relative occurrence.")
37 matchRadius = Field(dtype=float, default=0.2, doc=
"Source matching radius (arcsec)")
48 """!Task to propagate flags from single-frame measurements to coadd measurements
50 \anchor PropagateVisitFlagsTask_
52 \brief Propagate flags from individual visit measurements to coadd measurements
54 \section pipe_tasks_propagateVisitFlagsTask_Contents Contents
56 - \ref pipe_tasks_propagateVisitFlagsTask_Description
57 - \ref pipe_tasks_propagateVisitFlagsTask_Initialization
58 - \ref pipe_tasks_propagateVisitFlagsTask_Config
59 - \ref pipe_tasks_propagateVisitFlagsTask_Use
60 - \ref pipe_tasks_propagateVisitFlagsTask_Example
62 \section pipe_tasks_propagateVisitFlagsTask_Description Description
64 \copybrief PropagateVisitFlagsTask
66 We want to be able to set a flag for sources on the coadds using flags
67 that were determined from the individual visits. A common example is sources
68 that were used for PSF determination, since we do not do any PSF determination
69 on the coadd but use the individual visits. This requires matching the coadd
70 source catalog to each of the catalogs from the inputs (see
71 PropagateVisitFlagsConfig.matchRadius), and thresholding on the number of
72 times a source is flagged on the input catalog.
74 An important consideration in this is that the flagging of sources in the
75 individual visits can be somewhat stochastic, e.g., the same stars may not
76 always be used for PSF determination because the field of view moves slightly
77 between visits, or the seeing changed. We there threshold on the relative
78 occurrence of the flag in the visits (see PropagateVisitFlagsConfig.flags).
79 Flagging a source that is always flagged in inputs corresponds to a threshold
80 of 1, while flagging a source that is flagged in any of the input corresponds
81 to a threshold of 0. But neither of these extrema are really useful in
84 Setting the threshold too high means that sources that are not consistently
85 flagged (e.g., due to chip gaps) will not have the flag propagated. Setting
86 that threshold too low means that random sources which are falsely flagged in
87 the inputs will start to dominate. If in doubt, we suggest making this
88 threshold relatively low, but not zero (e.g., 0.1 to 0.2 or so). The more
89 confidence in the quality of the flagging, the lower the threshold can be.
91 The relative occurrence accounts for the edge of the field-of-view of the
92 camera, but does not include chip gaps, bad or saturated pixels, etc.
94 \section pipe_tasks_propagateVisitFlagsTask_Initialization Initialization
96 Beyond the usual Task initialization, PropagateVisitFlagsTask also requires
97 a schema for the catalog that is being constructed.
99 \section pipe_tasks_propagateVisitFlagsTask_Config Configuration parameters
101 See \ref PropagateVisitFlagsConfig
103 \section pipe_tasks_propagateVisitFlagsTask_Use Use
105 The 'run' method (described below) is the entry-point for operations. The
106 'getCcdInputs' staticmethod is provided as a convenience for retrieving the
107 'ccdInputs' (CCD inputs table) from an Exposure.
111 \section pipe_tasks_propagateVisitFlagsTask_Example Example
115 # * butler: data butler, for retrieving the CCD catalogs
116 # * coaddCatalog: catalog of source measurements on the coadd (lsst.afw.table.SourceCatalog)
117 # * coaddExposure: coadd (lsst.afw.image.Exposure)
118 from lsst.pipe.tasks.propagateVisitFlags import PropagateVisitFlagsTask, PropagateVisitFlagsConfig
119 config = PropagateVisitFlagsConfig()
120 config.flags["calib.psf.used"] = 0.3 # Relative threshold for this flag
121 config.matchRadius = 0.5 # Matching radius in arcsec
122 task = PropagateVisitFlagsTask(coaddCatalog.schema, config=config)
123 ccdInputs = task.getCcdInputs(coaddExposure)
124 task.run(butler, coaddCatalog, ccdInputs, coaddExposure.getWcs())
127 ConfigClass = PropagateVisitFlagsConfig
130 Task.__init__(self, **kwargs)
132 self.
_keys = dict((f, self.schema.addField(f, type=
"Flag", doc=
"Propagated from visits"))
for
133 f
in self.config.flags)
137 """!Convenience method to retrieve the CCD inputs table from a coadd exposure"""
138 return coaddExposure.getInfo().getCoaddInputs().ccds
140 def run(self, butler, coaddSources, ccdInputs, coaddWcs):
141 """!Propagate flags from individual visit measurements to coadd
143 This requires matching the coadd source catalog to each of the catalogs
144 from the inputs, and thresholding on the number of times a source is
145 flagged on the input catalog. The threshold is made on the relative
146 occurrence of the flag in each source. Flagging a source that is always
147 flagged in inputs corresponds to a threshold of 1, while flagging a
148 source that is flagged in any of the input corresponds to a threshold of
149 0. But neither of these extrema are really useful in practise.
151 Setting the threshold too high means that sources that are not consistently
152 flagged (e.g., due to chip gaps) will not have the flag propagated. Setting
153 that threshold too low means that random sources which are falsely flagged in
154 the inputs will start to dominate. If in doubt, we suggest making this threshold
155 relatively low, but not zero (e.g., 0.1 to 0.2 or so). The more confidence in
156 the quality of the flagging, the lower the threshold can be.
158 The relative occurrence accounts for the edge of the field-of-view of
159 the camera, but does not include chip gaps, bad or saturated pixels, etc.
161 @param[in] butler Data butler, for retrieving the input source catalogs
162 @param[in,out] coaddSources Source catalog from the coadd
163 @param[in] ccdInputs Table of CCDs that contribute to the coadd
164 @param[in] coaddWcs Wcs for coadd
166 if len(self.config.flags) == 0:
169 flags = self._keys.keys()
170 visitKey = ccdInputs.schema.find(
"visit").key
171 ccdKey = ccdInputs.schema.find(
"ccd").key
172 radius = self.config.matchRadius*afwGeom.arcseconds
174 self.log.info(
"Propagating flags %s from inputs" % (flags,))
176 counts = dict((f, numpy.zeros(len(coaddSources), dtype=int))
for f
in flags)
177 indices = numpy.array([s.getId()
for s
in coaddSources])
180 for ccdRecord
in ccdInputs:
181 v = ccdRecord.get(visitKey)
182 c = ccdRecord.get(ccdKey)
183 ccdSources = butler.get(
"src", visit=int(v), ccd=int(c), immediate=
True)
184 for sourceRecord
in ccdSources:
185 sourceRecord.updateCoord(ccdRecord.getWcs())
191 matches =
afwTable.matchRaDec(coaddSources, ccdSources[ccdSources.get(flag)], radius,
False)
193 index = (numpy.where(indices == m.first.getId()))[0][0]
194 counts[flag][index] += 1
199 for s, num
in zip(coaddSources, counts[f]):
200 numOverlaps = len(ccdInputs.subsetContaining(s.getCentroid(), coaddWcs,
True))
201 s.setFlag(key, bool(num > numOverlaps*self.config.flags[f]))
202 self.log.info(
"Propagated %d sources with flag %s" % (sum(s.get(key)
for s
in coaddSources), f))
std::vector< Match< typename Cat::Record, typename Cat::Record > > matchRaDec(Cat const &cat, Angle radius, bool symmetric)
Task to propagate flags from single-frame measurements to coadd measurements.
Configuration for propagating flags to coadd.
def getCcdInputs
Convenience method to retrieve the CCD inputs table from a coadd exposure.
def run
Propagate flags from individual visit measurements to coadd.