LSSTApplications  16.0-11-g09ed895+2,16.0-11-g12e47bd,16.0-11-g9bb73b2+6,16.0-12-g5c924a4+6,16.0-14-g9a974b3+1,16.0-15-g1417920+1,16.0-15-gdd5ca33+1,16.0-16-gf0259e2,16.0-17-g31abd91+7,16.0-17-g7d7456e+7,16.0-17-ga3d2e9f+13,16.0-18-ga4d4bcb+1,16.0-18-gd06566c+1,16.0-2-g0febb12+21,16.0-2-g9d5294e+69,16.0-2-ga8830df+6,16.0-20-g21842373+7,16.0-24-g3eae5ec,16.0-28-gfc9ea6c+4,16.0-29-ge8801f9,16.0-3-ge00e371+34,16.0-4-g18f3627+13,16.0-4-g5f3a788+20,16.0-4-ga3eb747+10,16.0-4-gabf74b7+29,16.0-4-gb13d127+6,16.0-49-g42e581f7+6,16.0-5-g27fb78a+7,16.0-5-g6a53317+34,16.0-5-gb3f8a4b+87,16.0-6-g9321be7+4,16.0-6-gcbc7b31+42,16.0-6-gf49912c+29,16.0-7-gd2eeba5+51,16.0-71-ge89f8615e,16.0-8-g21fd5fe+29,16.0-8-g3a9f023+20,16.0-8-g4734f7a+1,16.0-8-g5858431+3,16.0-9-gf5c1f43+8,master-gd73dc1d098+1,w.2019.01
LSSTDataManagementBasePackage
MixturePrior.h
Go to the documentation of this file.
1 // -*- lsst-c++ -*-
2 /*
3  * LSST Data Management System
4  * Copyright 2008-2013 LSST Corporation.
5  *
6  * This product includes software developed by the
7  * LSST Project (http://www.lsst.org/).
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the LSST License Statement and
20  * the GNU General Public License along with this program. If not,
21  * see <http://www.lsstcorp.org/LegalNotices/>.
22  */
23 
24 #ifndef LSST_MEAS_MODELFIT_MixturePrior_h_INCLUDED
25 #define LSST_MEAS_MODELFIT_MixturePrior_h_INCLUDED
26 
29 
30 namespace lsst { namespace meas { namespace modelfit {
31 
35 class MixturePrior : public Prior {
36 public:
37 
38  explicit MixturePrior(PTR(Mixture const) mixture, std::string const & tag="");
39 
42  ndarray::Array<Scalar const,1,1> const & nonlinear,
43  ndarray::Array<Scalar const,1,1> const & amplitudes
44  ) const override;
45 
48  ndarray::Array<Scalar const,1,1> const & nonlinear,
49  ndarray::Array<Scalar const,1,1> const & amplitudes,
50  ndarray::Array<Scalar,1,1> const & nonlinearGradient,
51  ndarray::Array<Scalar,1,1> const & amplitudeGradient,
52  ndarray::Array<Scalar,2,1> const & nonlinearHessian,
53  ndarray::Array<Scalar,2,1> const & amplitudeHessian,
54  ndarray::Array<Scalar,2,1> const & crossHessian
55  ) const override;
56 
59  Vector const & gradient, Matrix const & hessian,
60  ndarray::Array<Scalar const,1,1> const & nonlinear
61  ) const override;
62 
65  Vector const & gradient, Matrix const & hessian,
66  ndarray::Array<Scalar const,1,1> const & nonlinear,
67  ndarray::Array<Scalar,1,1> const & amplitudes
68  ) const override;
69 
71  void drawAmplitudes(
72  Vector const & gradient, Matrix const & fisher,
73  ndarray::Array<Scalar const,1,1> const & nonlinear,
74  afw::math::Random & rng,
75  ndarray::Array<Scalar,2,1> const & amplitudes,
76  ndarray::Array<Scalar,1,1> const & weights,
77  bool multiplyWeights=false
78  ) const override;
79 
87 
88  PTR(Mixture const) getMixture() const { return _mixture; }
89 
90 private:
91  PTR(Mixture const) _mixture;
92 };
93 
94 }}} // namespace lsst::meas::modelfit
95 
96 #endif // !LSST_MEAS_MODELFIT_MixturePrior_h_INCLUDED
MixturePrior(boost::shared_ptr< Mixture const > mixture, std::string const &tag="")
void drawAmplitudes(Vector const &gradient, Matrix const &fisher, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, afw::math::Random &rng, ndarray::Array< Scalar, 2, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &weights, bool multiplyWeights=false) const override
Draw a set of Monte Carlo amplitude vectors.
boost::shared_ptr< Mixture const > getMixture() const
Definition: MixturePrior.h:88
Scalar maximize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar, 1, 1 > const &amplitudes) const override
Compute the amplitude vector that maximizes the prior x likelihood product.
double Scalar
Typedefs to be used for probability and parameter values.
Definition: common.h:44
table::Key< table::Array< double > > amplitudes
STL class.
Helper class used to define restrictions to the form of the component parameters in Mixture::updateEM...
Definition: Mixture.h:111
#define PTR(...)
Definition: base.h:41
A base class for image defects.
Definition: cameraGeom.dox:3
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > Matrix
Typedefs to be used for probability and parameter values.
Definition: common.h:45
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
Typedefs to be used for probability and parameter values.
Definition: common.h:46
static MixtureUpdateRestriction const & getUpdateRestriction()
Return a MixtureUpdateRestriction appropriate for (e1,e2,r) data.
Scalar evaluate(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes) const override
Evaluate the prior at the given point in nonlinear and amplitude space.
Base class for Bayesian priors.
Definition: Prior.h:36
A prior that&#39;s flat in amplitude parameters, and uses a Mixture for nonlinear parameters.
Definition: MixturePrior.h:35
Scalar marginalize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear) const override
Return the -log amplitude integral of the prior*likelihood product.
void evaluateDerivatives(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &nonlinearGradient, ndarray::Array< Scalar, 1, 1 > const &amplitudeGradient, ndarray::Array< Scalar, 2, 1 > const &nonlinearHessian, ndarray::Array< Scalar, 2, 1 > const &amplitudeHessian, ndarray::Array< Scalar, 2, 1 > const &crossHessian) const override
Evaluate the derivatives of the prior at the given point in nonlinear and amplitude space...
A class that can be used to generate sequences of random numbers according to a number of different a...
Definition: Random.h:57