LSSTApplications  16.0-11-g09ed895+2,16.0-11-g12e47bd,16.0-11-g9bb73b2+6,16.0-12-g5c924a4+6,16.0-14-g9a974b3+1,16.0-15-g1417920+1,16.0-15-gdd5ca33+1,16.0-16-gf0259e2,16.0-17-g31abd91+7,16.0-17-g7d7456e+7,16.0-17-ga3d2e9f+13,16.0-18-ga4d4bcb+1,16.0-18-gd06566c+1,16.0-2-g0febb12+21,16.0-2-g9d5294e+69,16.0-2-ga8830df+6,16.0-20-g21842373+7,16.0-24-g3eae5ec,16.0-28-gfc9ea6c+4,16.0-29-ge8801f9,16.0-3-ge00e371+34,16.0-4-g18f3627+13,16.0-4-g5f3a788+20,16.0-4-ga3eb747+10,16.0-4-gabf74b7+29,16.0-4-gb13d127+6,16.0-49-g42e581f7+6,16.0-5-g27fb78a+7,16.0-5-g6a53317+34,16.0-5-gb3f8a4b+87,16.0-6-g9321be7+4,16.0-6-gcbc7b31+42,16.0-6-gf49912c+29,16.0-7-gd2eeba5+51,16.0-71-ge89f8615e,16.0-8-g21fd5fe+29,16.0-8-g3a9f023+20,16.0-8-g4734f7a+1,16.0-8-g5858431+3,16.0-9-gf5c1f43+8,master-gd73dc1d098+1,w.2019.01
LSSTDataManagementBasePackage
ScaledBasis1d.h
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 /*
3  * Developed for the LSST Data Management System.
4  * This product includes software developed by the LSST Project
5  * (https://www.lsst.org).
6  * See the COPYRIGHT file at the top-level directory of this distribution
7  * for details of code ownership.
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program. If not, see <https://www.gnu.org/licenses/>.
21  */
22 #ifndef LSST_AFW_MATH_POLYNOMIALS_ScaledBasis1d_h_INCLUDED
23 #define LSST_AFW_MATH_POLYNOMIALS_ScaledBasis1d_h_INCLUDED
24 
27 
28 namespace lsst { namespace geom { namespace polynomials {
29 
30 template <typename Basis>
31 class Function1d;
32 
43 template <typename Nested>
45 public:
46 
49 
52 
54  explicit ScaledBasis1d(Nested const & nested, Scaling1d const & scaling) :
55  _nested(nested),
56  _scaling(scaling)
57  {}
58 
73  ScaledBasis1d(std::size_t order, double min, double max) :
74  _nested(order),
75  _scaling(makeUnitRangeScaling1d(min, max))
76  {}
77 
79  ScaledBasis1d(ScaledBasis1d const &) = default;
80 
82  ScaledBasis1d(ScaledBasis1d &&) = default;
83 
85  ScaledBasis1d & operator=(ScaledBasis1d const &) = default;
86 
88  ScaledBasis1d & operator=(ScaledBasis1d &&) = default;
89 
91  Nested const & getNested() const noexcept { return _nested; }
92 
94  Scaling1d const & getScaling() const noexcept { return _scaling; }
95 
97  std::size_t getOrder() const { return getNested().getOrder(); }
98 
100  std::size_t size() const { return getNested().size(); }
101 
108  Scaled scaled(Scaling1d const & first) const {
109  return getNested().scaled(first.then(getScaling()));
110  }
111 
130  template <typename Vector>
131  double sumWith(double x, Vector const & coefficients, SumMode mode=SumMode::FAST) const {
132  return getNested().sumWith(getScaling().applyForward(x), coefficients, mode);
133  }
134 
145  template <typename Vector>
146  void fill(double x, Vector && basis) const {
147  return getNested().fill(getScaling().applyForward(x), std::forward<Vector>(basis));
148  }
149 
150 private:
151  Nested _nested;
152  Scaling1d _scaling;
153 };
154 
155 }}} // namespace lsst::geom::polynomials
156 
157 #endif // !LSST_AFW_MATH_POLYNOMIALS_ScaledBasis1d_h_INCLUDED
Nested const & getNested() const noexcept
Return the nested basis.
Definition: ScaledBasis1d.h:91
A 1-d basis that transforms all input points before evaluating nested basis.
Definition: ScaledBasis1d.h:44
Scaled scaled(Scaling1d const &first) const
Return a further-scaled basis with the same order.
std::size_t getOrder() const
Return the order of the basis.
Definition: ScaledBasis1d.h:97
Summation using regular floating-point addition.
Scaling1d const & getScaling() const noexcept
Return the scaling transform.
Definition: ScaledBasis1d.h:94
int min
ScaledBasis1d(std::size_t order, double min, double max)
Construct a basis that remaps the given interval to [-1, 1] before evaluating the nested basis...
Definition: ScaledBasis1d.h:73
SumMode
Enum used to control how to sum polynomial terms.
Definition: SafeSum.h:32
A 1-d function defined by a series expansion and its coefficients.
Definition: Function1d.h:42
A base class for image defects.
Definition: cameraGeom.dox:3
double sumWith(double x, Vector const &coefficients, SumMode mode=SumMode::FAST) const
Evaluate a basis expansion with the given coefficients.
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
Typedefs to be used for probability and parameter values.
Definition: common.h:46
int max
Scaling1d makeUnitRangeScaling1d(double min, double max) noexcept
Return a Scaling1d that maps the interval [min, max] to [-1, 1].
Definition: Scaling1d.h:120
table::Key< table::Array< double > > basis
Definition: PsfexPsf.cc:361
double x
ScaledBasis1d & operator=(ScaledBasis1d const &)=default
Default copy assignment.
A 1-d affine transform that can be used to map one interval to another.
Definition: Scaling1d.h:46
std::size_t size() const
Return the number of elements in the basis.
Scaling1d then(Scaling1d const &second) const noexcept
Compose two transforms.
Definition: Scaling1d.h:107
table::Key< int > nested
ScaledBasis1d(Nested const &nested, Scaling1d const &scaling)
Construct a scaled basis from a nested basis and a scaling transform.
Definition: ScaledBasis1d.h:54
ndarray::Array< double const, 2, 2 > coefficients
void fill(double x, Vector &&basis) const
Evaluate the basis at a given point.