LSSTApplications  16.0-10-g0ee56ad+5,16.0-11-ga33d1f2+5,16.0-12-g3ef5c14+3,16.0-12-g71e5ef5+18,16.0-12-gbdf3636+3,16.0-13-g118c103+3,16.0-13-g8f68b0a+3,16.0-15-gbf5c1cb+4,16.0-16-gfd17674+3,16.0-17-g7c01f5c+3,16.0-18-g0a50484+1,16.0-20-ga20f992+8,16.0-21-g0e05fd4+6,16.0-21-g15e2d33+4,16.0-22-g62d8060+4,16.0-22-g847a80f+4,16.0-25-gf00d9b8+1,16.0-28-g3990c221+4,16.0-3-gf928089+3,16.0-32-g88a4f23+5,16.0-34-gd7987ad+3,16.0-37-gc7333cb+2,16.0-4-g10fc685+2,16.0-4-g18f3627+26,16.0-4-g5f3a788+26,16.0-5-gaf5c3d7+4,16.0-5-gcc1f4bb+1,16.0-6-g3b92700+4,16.0-6-g4412fcd+3,16.0-6-g7235603+4,16.0-69-g2562ce1b+2,16.0-8-g14ebd58+4,16.0-8-g2df868b+1,16.0-8-g4cec79c+6,16.0-8-gadf6c7a+1,16.0-8-gfc7ad86,16.0-82-g59ec2a54a+1,16.0-9-g5400cdc+2,16.0-9-ge6233d7+5,master-g2880f2d8cf+3,v17.0.rc1
LSSTDataManagementBasePackage
PolynomialTransform.h
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 
3 /*
4  * LSST Data Management System
5  * Copyright 2016 LSST/AURA
6  *
7  * This product includes software developed by the
8  * LSST Project (http://www.lsst.org/).
9  *
10  * This program is free software: you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, either version 3 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the LSST License Statement and
21  * the GNU General Public License along with this program. If not,
22  * see <http://www.lsstcorp.org/LegalNotices/>.
23  */
24 #ifndef LSST_MEAS_ASTROM_PolynomialTransform_INCLUDED
25 #define LSST_MEAS_ASTROM_PolynomialTransform_INCLUDED
26 
27 #include "ndarray/eigen.h"
28 #include "lsst/geom/Point.h"
30 
31 namespace lsst {
32 namespace meas {
33 namespace astrom {
34 
35 class SipForwardTransform;
36 class SipReverseTransform;
37 class ScaledPolynomialTransform;
38 
46 public:
51 
55  static PolynomialTransform convert(SipForwardTransform const& other);
56 
60  static PolynomialTransform convert(SipReverseTransform const& other);
61 
72  PolynomialTransform(ndarray::Array<double const, 2, 0> const& xCoeffs,
73  ndarray::Array<double const, 2, 0> const& yCoeffs);
74 
81 
88 
95 
102 
104  void swap(PolynomialTransform& other);
105 
107  int getOrder() const { return _xCoeffs.getSize<0>() - 1; }
108 
115  ndarray::Array<double const, 2, 2> getXCoeffs() const { return _xCoeffs.shallow(); }
116 
123  ndarray::Array<double const, 2, 2> getYCoeffs() const { return _yCoeffs.shallow(); }
124 
129 
133  geom::Point2D operator()(geom::Point2D const& in) const;
134 
135 private:
136  PolynomialTransform(int order);
137 
141  friend class SipForwardTransform;
142  friend class SipReverseTransform;
144 
145  ndarray::Array<double, 2, 2> _xCoeffs;
146  ndarray::Array<double, 2, 2> _yCoeffs;
147  mutable Eigen::VectorXd _u; // workspace for operator() and linearize
148  mutable Eigen::VectorXd _v;
149 };
150 
158 public:
166 
174  static ScaledPolynomialTransform convert(SipForwardTransform const& sipForward);
175 
183  static ScaledPolynomialTransform convert(SipReverseTransform const& sipReverse);
184 
196  geom::AffineTransform const& outputScalingInverse);
197 
199 
201 
203 
205 
206  void swap(ScaledPolynomialTransform& other);
207 
209  PolynomialTransform const& getPoly() const { return _poly; }
210 
212  geom::AffineTransform const& getInputScaling() const { return _inputScaling; }
213 
215  geom::AffineTransform const& getOutputScalingInverse() const { return _outputScalingInverse; }
216 
221 
225  geom::Point2D operator()(geom::Point2D const& in) const;
226 
227 private:
229  PolynomialTransform _poly;
230  geom::AffineTransform _inputScaling;
231  geom::AffineTransform _outputScalingInverse;
232 };
233 
241 
249 
250 } // namespace astrom
251 } // namespace meas
252 } // namespace lsst
253 
254 #endif // !LSST_MEAS_ASTROM_PolynomialTransform_INCLUDED
Low-level polynomials (including special polynomials) in C++.
Definition: Basis1d.h:26
An affine coordinate transformation consisting of a linear transformation and an offset.
PolynomialTransform const & getPoly() const
Return the polynomial transform applied after the input scaling.
A fitter class for scaled polynomial transforms.
geom::AffineTransform const & getInputScaling() const
Return the first affine transform applied to input points.
A transform that maps pixel coordinates to intermediate world coordinates according to the SIP conven...
Definition: SipTransform.h:136
geom::AffineTransform const & getOutputScalingInverse() const
Return the affine transform applied to points after the polynomial transform.
PolynomialTransform(ndarray::Array< double const, 2, 0 > const &xCoeffs, ndarray::Array< double const, 2, 0 > const &yCoeffs)
Construct a new transform from existing coefficient arrays.
A base class for image defects.
void swap(PolynomialTransform &other)
Lightweight swap.
PolynomialTransform & operator=(PolynomialTransform const &other)
Copy assignment.
static PolynomialTransform convert(ScaledPolynomialTransform const &other)
Convert a ScaledPolynomialTransform to an equivalent PolynomialTransform.
A 2-d coordinate transform represented by a lazy composition of an AffineTransform, a PolynomialTransform, and another AffineTransform.
A transform that maps intermediate world coordinates to pixel coordinates according to the SIP conven...
Definition: SipTransform.h:246
geom::Point2D operator()(geom::Point2D const &in) const
Apply the transform to a point.
ndarray::Array< double const, 2, 2 > getXCoeffs() const
2-D polynomial coefficients that compute the output x coordinate.
ndarray::Array< double const, 2, 2 > getYCoeffs() const
2-D polynomial coefficients that compute the output x coordinate.
ItemVariant const * other
Definition: Schema.cc:56
geom::AffineTransform linearize(geom::Point2D const &in) const
Return an approximate affine transform at the given point.
int getOrder() const
Return the order of the polynomials.
friend PolynomialTransform compose(geom::AffineTransform const &t1, PolynomialTransform const &t2)
Return a PolynomialTransform that is equivalent to the composition t1(t2())
A 2-d coordinate transform represented by a pair of standard polynomials (one for each coordinate)...