LSSTApplications  17.0+11,17.0+34,17.0+56,17.0+57,17.0+59,17.0+7,17.0-1-g377950a+33,17.0.1-1-g114240f+2,17.0.1-1-g4d4fbc4+28,17.0.1-1-g55520dc+49,17.0.1-1-g5f4ed7e+52,17.0.1-1-g6dd7d69+17,17.0.1-1-g8de6c91+11,17.0.1-1-gb9095d2+7,17.0.1-1-ge9fec5e+5,17.0.1-1-gf4e0155+55,17.0.1-1-gfc65f5f+50,17.0.1-1-gfc6fb1f+20,17.0.1-10-g87f9f3f+1,17.0.1-11-ge9de802+16,17.0.1-16-ga14f7d5c+4,17.0.1-17-gc79d625+1,17.0.1-17-gdae4c4a+8,17.0.1-2-g26618f5+29,17.0.1-2-g54f2ebc+9,17.0.1-2-gf403422+1,17.0.1-20-g2ca2f74+6,17.0.1-23-gf3eadeb7+1,17.0.1-3-g7e86b59+39,17.0.1-3-gb5ca14a,17.0.1-3-gd08d533+40,17.0.1-30-g596af8797,17.0.1-4-g59d126d+4,17.0.1-4-gc69c472+5,17.0.1-6-g5afd9b9+4,17.0.1-7-g35889ee+1,17.0.1-7-gc7c8782+18,17.0.1-9-gc4bbfb2+3,w.2019.22
LSSTDataManagementBasePackage
AffineTransform.cc
Go to the documentation of this file.
1 /*
2  * Developed for the LSST Data Management System.
3  * This product includes software developed by the LSST Project
4  * (https://www.lsst.org).
5  * See the COPYRIGHT file at the top-level directory of this distribution
6  * for details of code ownership.
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program. If not, see <https://www.gnu.org/licenses/>.
20  */
21 
22 #include <iomanip>
23 
24 #include "Eigen/LU"
25 
28 
29 namespace lsst {
30 namespace geom {
31 
34  r << (*this)[XX], (*this)[YX], (*this)[XY], (*this)[YY], (*this)[X], (*this)[Y];
35  return r;
36 }
37 
39  (*this)[XX] = vector[XX];
40  (*this)[XY] = vector[XY];
41  (*this)[X] = vector[X];
42  (*this)[YX] = vector[YX];
43  (*this)[YY] = vector[YY];
44  (*this)[Y] = vector[Y];
45 }
46 
48  Matrix r;
49  r << (*this)[XX], (*this)[XY], (*this)[X], (*this)[YX], (*this)[YY], (*this)[Y], 0.0, 0.0, 1.0;
50  return r;
51 }
52 
55  return AffineTransform(inv, -inv(getTranslation()));
56 }
57 
59  TransformDerivativeMatrix r = TransformDerivativeMatrix::Zero();
60  r.block<2, 4>(0, 0) = getLinear().dTransform(input);
61  r(0, X) = 1.0;
62  r(1, Y) = 1.0;
63  return r;
64 }
65 
67  TransformDerivativeMatrix r = TransformDerivativeMatrix::Zero();
68  r.block<2, 4>(0, 0) = getLinear().dTransform(input);
69  return r;
70 }
71 
73  std::ios::fmtflags flags = os.flags();
74  AffineTransform::Matrix const &matrix = transform.getMatrix();
75  int prec = os.precision(7);
76  os.setf(std::ios::fixed);
77  os << "AffineTransform([(" << std::setw(10) << matrix(0, 0) << "," << std::setw(10) << matrix(0, 1) << ","
78  << std::setw(10) << matrix(0, 2) << "),\n";
79  os << " (" << std::setw(10) << matrix(1, 0) << "," << std::setw(10) << matrix(1, 1) << ","
80  << std::setw(10) << matrix(1, 2) << "),\n";
81  os << " (" << std::setw(10) << matrix(2, 0) << "," << std::setw(10) << matrix(2, 1) << ","
82  << std::setw(10) << matrix(2, 2) << ")])";
83  os.precision(prec);
84  os.flags(flags);
85  return os;
86 }
87 
89  Point2D const &q1, Point2D const &q2, Point2D const &q3) {
90  Eigen::Matrix3d mp;
91  mp << p1.getX(), p2.getX(), p3.getX(), p1.getY(), p2.getY(), p3.getY(), 1.0, 1.0, 1.0;
92 
93  Eigen::Matrix3d mq;
94  mq << q1.getX(), q2.getX(), q3.getX(), q1.getY(), q2.getY(), q3.getY(), 1.0, 1.0, 1.0;
95 
96  Eigen::Matrix3d m = mq * mp.inverse();
97  return AffineTransform(m);
98 }
99 
100 } // namespace geom
101 } // namespace lsst
T setf(T... args)
void setParameterVector(ParameterVector const &vector) noexcept
Set the transform matrix elements from a parameter vector.
An affine coordinate transformation consisting of a linear transformation and an offset.
TransformDerivativeMatrix dTransform(Point2D const &input) const noexcept
Derivative of (*this)(input) with respect to the transform elements (for Point).
Eigen::Matrix< double, 2, 6 > TransformDerivativeMatrix
T precision(T... args)
Eigen::Matrix< double, 6, 1 > ParameterVector
T setw(T... args)
Matrix const getMatrix() const noexcept
Return the transform as a full 3x3 matrix.
T flags(T... args)
A base class for image defects.
ParameterVector const getParameterVector() const noexcept
Return the transform matrix elements as a parameter vector.
std::ostream & operator<<(std::ostream &os, lsst::geom::AffineTransform const &transform)
LinearTransform const & getLinear() const noexcept
TransformDerivativeMatrix dTransform(Point2D const &input) const noexcept
Take the derivative of (*this)(input) w.r.t the transform elements.
int m
Definition: SpanSet.cc:49
STL class.
AffineTransform const inverted() const
Return the inverse transform.
A 2D linear coordinate transformation.
std::ostream * os
Definition: Schema.cc:746
AffineTransform() noexcept
Construct an empty (identity) AffineTransform.
AffineTransform makeAffineTransformFromTriple(Point2D const &p1, Point2D const &p2, Point2D const &p3, Point2D const &q1, Point2D const &q2, Point2D const &q3)
Extent2D const & getTranslation() const noexcept