LSSTApplications  17.0+11,17.0+34,17.0+56,17.0+57,17.0+59,17.0+7,17.0-1-g377950a+33,17.0.1-1-g114240f+2,17.0.1-1-g4d4fbc4+28,17.0.1-1-g55520dc+49,17.0.1-1-g5f4ed7e+52,17.0.1-1-g6dd7d69+17,17.0.1-1-g8de6c91+11,17.0.1-1-gb9095d2+7,17.0.1-1-ge9fec5e+5,17.0.1-1-gf4e0155+55,17.0.1-1-gfc65f5f+50,17.0.1-1-gfc6fb1f+20,17.0.1-10-g87f9f3f+1,17.0.1-11-ge9de802+16,17.0.1-16-ga14f7d5c+4,17.0.1-17-gc79d625+1,17.0.1-17-gdae4c4a+8,17.0.1-2-g26618f5+29,17.0.1-2-g54f2ebc+9,17.0.1-2-gf403422+1,17.0.1-20-g2ca2f74+6,17.0.1-23-gf3eadeb7+1,17.0.1-3-g7e86b59+39,17.0.1-3-gb5ca14a,17.0.1-3-gd08d533+40,17.0.1-30-g596af8797,17.0.1-4-g59d126d+4,17.0.1-4-gc69c472+5,17.0.1-6-g5afd9b9+4,17.0.1-7-g35889ee+1,17.0.1-7-gc7c8782+18,17.0.1-9-gc4bbfb2+3,w.2019.22
LSSTDataManagementBasePackage
UnitVector3d.h
Go to the documentation of this file.
1 /*
2  * LSST Data Management System
3  * Copyright 2014-2015 AURA/LSST.
4  *
5  * This product includes software developed by the
6  * LSST Project (http://www.lsst.org/).
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the LSST License Statement and
19  * the GNU General Public License along with this program. If not,
20  * see <https://www.lsstcorp.org/LegalNotices/>.
21  */
22 
23 #ifndef LSST_SPHGEOM_UNITVECTOR3D_H_
24 #define LSST_SPHGEOM_UNITVECTOR3D_H_
25 
28 
29 #include "LonLat.h"
30 #include "Vector3d.h"
31 
32 
33 namespace lsst {
34 namespace sphgeom {
35 
55 class UnitVector3d {
56 public:
59  static UnitVector3d orthogonalTo(Vector3d const & v);
60 
65  static UnitVector3d orthogonalTo(Vector3d const & v1, Vector3d const & v2);
66 
72  static UnitVector3d northFrom(Vector3d const & v);
73 
77  UnitVector3d u; u._v = Vector3d(-sin(a), cos(a), 0.0); return u;
78  }
79 
82  static UnitVector3d fromNormalized(Vector3d const & v) {
83  UnitVector3d u; u._v = v; return u;
84  }
85 
89  static UnitVector3d fromNormalized(double x, double y, double z) {
90  UnitVector3d u; u._v = Vector3d(x, y, z); return u;
91  }
92 
93  static UnitVector3d X() {
94  return UnitVector3d();
95  }
96 
97  static UnitVector3d Y() {
98  UnitVector3d u; u._v = Vector3d(0.0, 1.0, 0.0); return u;
99  }
100 
101  static UnitVector3d Z() {
102  UnitVector3d u; u._v = Vector3d(0.0, 0.0, 1.0); return u;
103  }
104 
106  UnitVector3d() : _v(1.0, 0.0, 0.0) {}
107 
108  UnitVector3d(UnitVector3d const & v) : _v(v._v) {}
109 
112  explicit UnitVector3d(Vector3d const & v) : _v(v) {
113  _v.normalize();
114  }
115 
116  UnitVector3d(double x, double y, double z) : _v(x, y, z) {
117  _v.normalize();
118  }
120 
123  explicit UnitVector3d(LonLat const & p) {
124  *this = UnitVector3d(p.getLon(), p.getLat());
125  }
126 
129  UnitVector3d(Angle lon, Angle lat);
130 
134  operator Vector3d const & () const { return _v; }
135 
136  bool operator==(Vector3d const & v) const { return _v == v; }
137  bool operator!=(Vector3d const & v) const { return _v != v; }
138 
140  double const * getData() const { return _v.getData(); }
141 
143  double operator()(int i) const { return _v(i); }
144 
145  double x() const { return _v.x(); }
146 
147  double y() const { return _v.y(); }
148 
149  double z() const { return _v.z(); }
150 
152  double dot(Vector3d const & v) const { return _v.dot(v); }
153 
155  Vector3d cross(Vector3d const & v) const { return _v.cross(v); }
156 
161  Vector3d robustCross(UnitVector3d const & v) const {
162  return (v + *this).cross(v - *this);
163  }
164 
166  UnitVector3d operator-() const {
167  UnitVector3d u; u._v = -_v; return u;
168  }
169 
172  Vector3d operator*(double s) const { return _v * s; }
173 
176  Vector3d operator/(double s) const { return _v / s; }
177 
179  Vector3d operator+(Vector3d const & v) const { return _v + v; }
180 
183  Vector3d operator-(Vector3d const & v) const { return _v - v; }
184 
187  Vector3d cwiseProduct(Vector3d const & v) const {
188  return _v.cwiseProduct(v);
189  }
190 
193  UnitVector3d rotatedAround(UnitVector3d const & k, Angle a) const {
194  return UnitVector3d(_v.rotatedAround(k, a));
195  }
196 
197 private:
198  Vector3d _v;
199 };
200 
201 
203 
204 }} // namespace lsst::sphgeom
205 
206 #endif // LSST_SPHGEOM_UNITVECTOR3D_H_
double normalize()
normalize scales this vector to have unit norm and returns its norm prior to scaling.
Definition: Vector3d.cc:41
static UnitVector3d X()
Definition: UnitVector3d.h:93
Vector3d cwiseProduct(Vector3d const &v) const
cwiseProduct returns the component-wise product of this vector and v.
Definition: Vector3d.h:150
static UnitVector3d orthogonalTo(Vector3d const &v)
orthogonalTo returns an arbitrary unit vector that is orthogonal to v.
Definition: UnitVector3d.cc:34
NormalizedAngle is an angle that lies in the range [0, 2π), with one exception - a NormalizedAngle ca...
Vector3d operator*(double s) const
The multiplication operator returns the component-wise product of this unit vector with scalar s...
Definition: UnitVector3d.h:172
Angle getLat() const
Definition: LonLat.h:90
UnitVector3d rotatedAround(UnitVector3d const &k, Angle a) const
rotatedAround returns a copy of this unit vector, rotated around the unit vector k by angle a accordi...
Definition: UnitVector3d.h:193
table::Key< int > a
std::ostream & operator<<(std::ostream &, Angle const &)
Definition: Angle.cc:34
static UnitVector3d northFrom(Vector3d const &v)
northFrom returns the unit vector orthogonal to v that points "north" from v.
Definition: UnitVector3d.cc:51
Vector3d rotatedAround(UnitVector3d const &k, Angle a) const
rotatedAround returns a copy of this vector, rotated around the unit vector k by angle a according to...
Definition: Vector3d.cc:125
static UnitVector3d orthogonalTo(NormalizedAngle const &a)
orthogonalTo returns the unit vector orthogonal to the meridian with the given longitude.
Definition: UnitVector3d.h:76
Vector3d robustCross(UnitVector3d const &v) const
a.robustCross(b) is (b + a).cross(b - a) - twice the cross product of a and b.
Definition: UnitVector3d.h:161
Vector3d is a vector in ℝ³ with components stored in double precision.
Definition: Vector3d.h:44
double sin(Angle const &a)
Definition: Angle.h:102
NormalizedAngle getLon() const
Definition: LonLat.h:88
double y() const
Definition: Vector3d.h:68
double cos(Angle const &a)
Definition: Angle.h:103
This file declares a class for representing vectors in ℝ³.
Vector3d operator+(Vector3d const &v) const
The addition operator returns the sum of this unit vector and v.
Definition: UnitVector3d.h:179
bool operator==(Vector3d const &v) const
Definition: UnitVector3d.h:136
Vector3d cross(Vector3d const &v) const
cross returns the cross product of this unit vector and v.
Definition: UnitVector3d.h:155
double x() const
Definition: Vector3d.h:66
A base class for image defects.
Vector3d operator-(Vector3d const &v) const
The subtraction operator returns the difference between this unit vector and v.
Definition: UnitVector3d.h:183
UnitVector3d(UnitVector3d const &v)
Definition: UnitVector3d.h:108
Vector3d cwiseProduct(Vector3d const &v) const
cwiseProduct returns the component-wise product of this unit vector and v.
Definition: UnitVector3d.h:187
static UnitVector3d Y()
Definition: UnitVector3d.h:97
solver_t * s
double const * getData() const
getData returns a pointer to the 3 components of this unit vector.
Definition: UnitVector3d.h:140
UnitVector3d(double x, double y, double z)
Definition: UnitVector3d.h:116
Angle represents an angle in radians.
Definition: Angle.h:43
static UnitVector3d fromNormalized(double x, double y, double z)
fromNormalized returns the unit vector with the given components, which are assumed to correspond to ...
Definition: UnitVector3d.h:89
LonLat represents a spherical coordinate (longitude/latitude angle) pair.
Definition: LonLat.h:48
static UnitVector3d Z()
Definition: UnitVector3d.h:101
Vector3d cross(Vector3d const &v) const
cross returns the cross product of this vector and v.
Definition: Vector3d.h:101
double z() const
Definition: Vector3d.h:70
bool operator!=(Vector3d const &v) const
Definition: UnitVector3d.h:137
UnitVector3d is a unit vector in ℝ³ with components stored in double precision.
Definition: UnitVector3d.h:55
Vector3d operator/(double s) const
The division operator returns the component-wise quotient of this unit vector with scalar s...
Definition: UnitVector3d.h:176
double dot(Vector3d const &v) const
dot returns the inner product of this unit vector and v.
Definition: UnitVector3d.h:152
double operator()(int i) const
The function call operator returns the i-th component of this vector.
Definition: UnitVector3d.h:143
STL class.
This file contains a class representing spherical coordinates.
static UnitVector3d fromNormalized(Vector3d const &v)
fromNormalized returns the unit vector equal to v, which is assumed to be normalized.
Definition: UnitVector3d.h:82
UnitVector3d(Vector3d const &v)
Definition: UnitVector3d.h:112
UnitVector3d operator-() const
The unary minus operator negates every component of this unit vector.
Definition: UnitVector3d.h:166
double const * getData() const
data returns a pointer to the 3 components of this vector.
Definition: Vector3d.h:61
double dot(Vector3d const &v) const
dot returns the inner product of this vector and v.
Definition: Vector3d.h:73
UnitVector3d(LonLat const &p)
This constructor creates the unit vector corresponding to the point p on the unit sphere...
Definition: UnitVector3d.h:123
UnitVector3d()
The default constructor creates a unit vector equal to (1, 0, 0).
Definition: UnitVector3d.h:106