LSSTApplications
17.0+11,17.0+34,17.0+56,17.0+57,17.0+59,17.0+7,17.0-1-g377950a+33,17.0.1-1-g114240f+2,17.0.1-1-g4d4fbc4+28,17.0.1-1-g55520dc+49,17.0.1-1-g5f4ed7e+52,17.0.1-1-g6dd7d69+17,17.0.1-1-g8de6c91+11,17.0.1-1-gb9095d2+7,17.0.1-1-ge9fec5e+5,17.0.1-1-gf4e0155+55,17.0.1-1-gfc65f5f+50,17.0.1-1-gfc6fb1f+20,17.0.1-10-g87f9f3f+1,17.0.1-11-ge9de802+16,17.0.1-16-ga14f7d5c+4,17.0.1-17-gc79d625+1,17.0.1-17-gdae4c4a+8,17.0.1-2-g26618f5+29,17.0.1-2-g54f2ebc+9,17.0.1-2-gf403422+1,17.0.1-20-g2ca2f74+6,17.0.1-23-gf3eadeb7+1,17.0.1-3-g7e86b59+39,17.0.1-3-gb5ca14a,17.0.1-3-gd08d533+40,17.0.1-30-g596af8797,17.0.1-4-g59d126d+4,17.0.1-4-gc69c472+5,17.0.1-6-g5afd9b9+4,17.0.1-7-g35889ee+1,17.0.1-7-gc7c8782+18,17.0.1-9-gc4bbfb2+3,w.2019.22
LSSTDataManagementBasePackage
|
Namespaces | |
cmodel | |
common | |
detail | |
display | |
optimizer | |
pixelFitRegion | |
priors | |
psf | |
version | |
Classes | |
class | AdaptiveImportanceSampler |
Sampler class that performs Monte Carlo sampling, while iteratively updating the analytic distribution from which points are drawn. More... | |
class | CModelAlgorithm |
Main public interface class for CModel algorithm. More... | |
struct | CModelControl |
The main control object for CModel, containing parameters for the final linear fit and aggregating the other control objects. More... | |
struct | CModelResult |
Master result object for CModel, containing results for the final linear fit and three nested CModelStageResult objects for the results of the previous stages. More... | |
struct | CModelStageControl |
Nested control object for CModel that configures one of the three ("initial", "exp", "dev") nonlinear fitting stages. More... | |
struct | CModelStageResult |
Result object for a single nonlinear fitting stage of the CModel algorithm. More... | |
class | DoubleShapeletPsfApproxAlgorithm |
An algorithm that fits a 2-component shapelet approximation to the PSF model. More... | |
class | DoubleShapeletPsfApproxControl |
Control object used to configure a 2-shapelet fit to a PSF model; see DoubleShapeletPsfApproxAlgorithm. More... | |
class | EpochFootprint |
An image at one epoch of a galaxy, plus associated info. More... | |
class | GeneralPsfFitter |
Class for fitting multishapelet models to PSF images. More... | |
class | GeneralPsfFitterAlgorithm |
class | GeneralPsfFitterComponentControl |
Control object used to define one piece of multishapelet fit to a PSF model; see GeneralPsfFitterControl. More... | |
class | GeneralPsfFitterControl |
Control object used to configure a multishapelet fit to a PSF model; see GeneralPsfFitter. More... | |
class | ImportanceSamplerControl |
Control object for one iteration of adaptive importance sampling. More... | |
class | Likelihood |
Base class for optimizer/sampler likelihood functions that compute likelihood at a point. More... | |
struct | LocalUnitTransform |
A local mapping between two UnitSystems. More... | |
class | Mixture |
class | MixtureComponent |
A weighted Student's T or Gaussian distribution used as a component in a Mixture. More... | |
class | MixturePrior |
A prior that's flat in amplitude parameters, and uses a Mixture for nonlinear parameters. More... | |
class | MixtureUpdateRestriction |
Helper class used to define restrictions to the form of the component parameters in Mixture::updateEM. More... | |
class | Model |
Abstract base class and concrete factories that define multi-shapelet galaxy models. More... | |
class | MultiModel |
A concrete Model class that simply concatenates several other Models. More... | |
class | MultiShapeletPsfLikelihood |
Likelihood object used to fit multishapelet models to PSF model images; mostly for internal use by GeneralPsfFitter. More... | |
class | Optimizer |
A numerical optimizer customized for least-squares problems with Bayesian priors. More... | |
class | OptimizerControl |
Configuration object for Optimizer. More... | |
class | OptimizerHistoryRecorder |
class | OptimizerObjective |
Base class for objective functions for Optimizer. More... | |
class | PixelFitRegion |
struct | PixelFitRegionControl |
class | Prior |
Base class for Bayesian priors. More... | |
class | Sampler |
class | SamplingObjective |
class | SemiEmpiricalPrior |
A piecewise prior motivated by both real distributions and practical considerations. More... | |
struct | SemiEmpiricalPriorControl |
class | SoftenedLinearPrior |
A prior that's linear in radius and flat in ellipticity, with a cubic roll-off at the edges. More... | |
struct | SoftenedLinearPriorControl |
class | TruncatedGaussian |
Represents a multidimensional Gaussian function truncated at zero. More... | |
class | TruncatedGaussianEvaluator |
Helper class for evaluating the -log of a TruncatedGaussian. More... | |
class | TruncatedGaussianLogEvaluator |
Helper class for evaluating the -log of a TruncatedGaussian. More... | |
class | TruncatedGaussianSampler |
Helper class for drawing samples from a TruncatedGaussian. More... | |
struct | UnitSystem |
A simple struct that combines a Wcs and a PhotoCalib. More... | |
class | UnitTransformedLikelihood |
A concrete Likelihood class that does not require its parameters and data to be in the same UnitSystem. More... | |
class | UnitTransformedLikelihoodControl |
Control object used to initialize a UnitTransformedLikelihood. More... | |
Typedefs | |
typedef std::vector< boost::shared_ptr< Model > > | ModelVector |
typedef float | Pixel |
Typedefs to be used for pixel values. More... | |
typedef double | Scalar |
Typedefs to be used for probability and parameter values. More... | |
typedef Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > | Matrix |
Typedefs to be used for probability and parameter values. More... | |
typedef Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > | Vector |
Typedefs to be used for probability and parameter values. More... | |
typedef afw::table::Key< Scalar > | ScalarKey |
Typedefs to be used for probability and parameter values. More... | |
typedef afw::table::Key< afw::table::Array< Scalar > > | ArrayKey |
Typedefs to be used for probability and parameter values. More... | |
Functions | |
void | solveTrustRegion (ndarray::Array< Scalar, 1, 1 > const &x, ndarray::Array< Scalar const, 2, 1 > const &F, ndarray::Array< Scalar const, 1, 1 > const &g, double r, double tolerance) |
Solve a symmetric quadratic matrix equation with a ball constraint. More... | |
typedef Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic> lsst::meas::modelfit::Matrix |
typedef std::vector<boost::shared_ptr< Model > > lsst::meas::modelfit::ModelVector |
typedef float lsst::meas::modelfit::Pixel |
Typedefs to be used for pixel values.
typedef double lsst::meas::modelfit::Scalar |
typedef Eigen::Matrix<Scalar,Eigen::Dynamic,1> lsst::meas::modelfit::Vector |
void lsst::meas::modelfit::solveTrustRegion | ( | ndarray::Array< Scalar, 1, 1 > const & | x, |
ndarray::Array< Scalar const, 2, 1 > const & | F, | ||
ndarray::Array< Scalar const, 1, 1 > const & | g, | ||
double | r, | ||
double | tolerance | ||
) |
Solve a symmetric quadratic matrix equation with a ball constraint.
This computes a near-exact solution to the "trust region subproblem" necessary in trust-region-based nonlinear optimizers:
\[ \min_x{\quad g^T x + \frac{1}{2}x^T F x}\quad\quad\quad \text{s.t.} ||x|| \le r \]
The tolerance parameter sets how close to \(r\) we require the norm of the solution to be when it lies on the constraint, as a fraction of \(r\) itself.
This implementation is based on the algorithm described in Section 4.3 of "Nonlinear Optimization" by Nocedal and Wright.