LSSTApplications  18.1.0
LSSTDataManagementBasePackage
sourceMatchStatistics.py
Go to the documentation of this file.
1 #
2 # LSST Data Management System
3 # Copyright 2008, 2009, 2010 LSST Corporation.
4 #
5 # This product includes software developed by the
6 # LSST Project (http://www.lsst.org/).
7 #
8 # This program is free software: you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation, either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the LSST License Statement and
19 # the GNU General Public License along with this program. If not,
20 # see <http://www.lsstcorp.org/LegalNotices/>.
21 #
22 
23 __all__ = ["sourceMatchStatistics"]
24 
25 import numpy as np
26 
27 
28 def sourceMatchStatistics(matchList, log=None):
29  """Compute statistics on the accuracy of a wcs solution, using a
30  precomputed list of matches between an image and a catalog.
31 
32  Parameters
33  ----------
34  matchList : `lsst.afw.detection.SourceMatch`
35  List of matches between sources and references to compute statistics
36  on.
37 
38  Returns
39  -------
40  values : `dict
41  Value dictionary with fields:
42 
43  - diffInPixels_mean : Average distance between image and
44  catalog position in pixels (`float`).
45  - diffInPixels_std : Root mean square of distribution of distances
46  (`float`).
47  - diffInPixels_Q25 : 25% quantile boundary of the match dist
48  distribution (`float`).
49  - diffInPixels_Q50 : 50% quantile boundary of the match dist
50  distribution (`float`).
51  - diffInPixels_Q75 : 75% quantile boundary of the match
52  dist distribution (`float`).
53  """
54 
55  size = len(matchList)
56  if size == 0:
57  raise ValueError("matchList contains no elements")
58 
59  dist = np.zeros(size)
60  i = 0
61  for match in matchList:
62  catObj = match.first
63  srcObj = match.second
64 
65  cx = catObj.getXAstrom()
66  cy = catObj.getYAstrom()
67 
68  sx = srcObj.getXAstrom()
69  sy = srcObj.getYAstrom()
70 
71  dist[i] = np.hypot(cx-sx, cy-sy)
72  i = i+1
73 
74  dist.sort()
75 
76  quartiles = []
77  for f in (0.25, 0.50, 0.75):
78  i = int(f*size + 0.5)
79  if i >= size:
80  i = size - 1
81  quartiles.append(dist[i])
82 
83  values = {}
84  values['diffInPixels_Q25'] = quartiles[0]
85  values['diffInPixels_Q50'] = quartiles[1]
86  values['diffInPixels_Q75'] = quartiles[2]
87  values['diffInPixels_mean'] = dist.mean()
88  values['diffInPixels_std'] = dist.std()
89 
90  return values