LSSTApplications  17.0+124,17.0+14,17.0+73,18.0.0+37,18.0.0+80,18.0.0-4-g68ffd23+4,18.1.0-1-g0001055+12,18.1.0-1-g03d53ef+5,18.1.0-1-g1349e88+55,18.1.0-1-g2505f39+44,18.1.0-1-g5315e5e+4,18.1.0-1-g5e4b7ea+14,18.1.0-1-g7e8fceb+4,18.1.0-1-g85f8cd4+48,18.1.0-1-g8ff0b9f+4,18.1.0-1-ga2c679d+1,18.1.0-1-gd55f500+35,18.1.0-10-gb58edde+2,18.1.0-11-g0997b02+4,18.1.0-13-gfe4edf0b+12,18.1.0-14-g259bd21+21,18.1.0-19-gdb69f3f+2,18.1.0-2-g5f9922c+24,18.1.0-2-gd3b74e5+11,18.1.0-2-gfbf3545+32,18.1.0-26-g728bddb4+5,18.1.0-27-g6ff7ca9+2,18.1.0-3-g52aa583+25,18.1.0-3-g8ea57af+9,18.1.0-3-gb69f684+42,18.1.0-3-gfcaddf3+6,18.1.0-32-gd8786685a,18.1.0-4-gf3f9b77+6,18.1.0-5-g1dd662b+2,18.1.0-5-g6dbcb01+41,18.1.0-6-gae77429+3,18.1.0-7-g9d75d83+9,18.1.0-7-gae09a6d+30,18.1.0-9-gc381ef5+4,w.2019.45
LSSTDataManagementBasePackage
Function1d.h
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 /*
3  * Developed for the LSST Data Management System.
4  * This product includes software developed by the LSST Project
5  * (https://www.lsst.org).
6  * See the COPYRIGHT file at the top-level directory of this distribution
7  * for details of code ownership.
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program. If not, see <https://www.gnu.org/licenses/>.
21  */
22 #ifndef LSST_AFW_MATH_POLYNOMIALS_Function1d_h_INCLUDED
23 #define LSST_AFW_MATH_POLYNOMIALS_Function1d_h_INCLUDED
24 
25 #include "Eigen/Core"
28 
29 namespace lsst { namespace geom { namespace polynomials {
30 
41 template <typename Basis_>
42 class Function1d {
43 public:
44 
45  using iterator = double *;
46  using const_iterator = double const *;
47 
49  using Basis = Basis_;
50 
52  explicit Function1d(Basis const & basis) :
53  _basis(basis),
54  _coefficients(Eigen::VectorXd::Zero(basis.size()))
55  {}
56 
58  Function1d(Basis const & basis, Eigen::VectorXd const & coefficients) :
59  _basis(basis),
60  _coefficients(coefficients)
61  {
62  assert(basis.size() == static_cast<std::size_t>(_coefficients.size()));
63  }
64 
66  template <typename Iterator>
68  _basis(basis),
69  _coefficients(basis.size())
70  {
71  assert(std::distance(first, last) == static_cast<std::ptrdiff_t>(basis.size()));
72  std::copy(first, last, &_coefficients[0]);
73  }
74 
76  Function1d(Function1d const &) = default;
77 
79  Function1d(Function1d &&) = default;
80 
82  Function1d & operator=(Function1d const &) = default;
83 
85  Function1d & operator=(Function1d &&) = default;
86 
88  iterator begin() { return _coefficients.data(); }
90  iterator end() { return begin() + size(); }
91  const_iterator cbegin() const { return _coefficients.data(); }
92  const_iterator cend() const { return begin() + size(); }
93  const_iterator begin() const { return _coefficients.data(); }
94  const_iterator end() const { return begin() + size(); }
96 
98  Basis const & getBasis() const { return _basis; }
99 
101  std::size_t size() const { return _basis.size(); }
102 
104  double operator()(double x, SumMode mode=SumMode::FAST) const {
105  return _basis.sumWith(x, _coefficients, mode);
106  }
107 
109 
114  double & operator[](std::size_t n) { return begin()[n]; }
115  double const & operator[](std::size_t n) const { return begin()[n]; }
117 
119 
126  // Return a block view to ensure the caller only modify the values, not the size.
127  return _coefficients.head(size());
128  }
129  auto getCoefficients() const { return _coefficients.head(size()); }
131 
134  return Function1d<typename Basis::Scaled>(getBasis().scaled(scaling), _coefficients);
135  }
136 
137 private:
138  Basis _basis;
139  Eigen::VectorXd _coefficients;
140 };
141 
143 template <typename Basis>
144 Function1d<Basis> makeFunction1d(Basis const & basis, Eigen::VectorXd const & coefficients) {
146 }
147 
149 template <typename Basis, typename Iterator>
151  return Function1d<Basis>(basis, first, last);
152 }
153 
154 
155 }}} // namespace lsst::geom::polynomials
156 
157 #endif // !LSST_AFW_MATH_POLYNOMIALS_Function1d_h_INCLUDED
Function1d< typename Basis::Scaled > scaled(Scaling1d const &scaling) const
Return a new function that applies the given scaling to all points before evaluation.
Definition: Function1d.h:133
T copy(T... args)
T distance(T... args)
Function1d(Basis const &basis)
Construct with zero-valued coefficients.
Definition: Function1d.h:52
double & operator[](std::size_t n)
Return the coefficient associated with the nth basis function.
Definition: Function1d.h:114
Summation using regular floating-point addition.
Function1d & operator=(Function1d const &)=default
Default copy assignment.
auto getCoefficients()
Return the coefficient vector as an Eigen matrix-like object.
Definition: Function1d.h:125
Basis_ Basis
The basis type used by this function.
Definition: Function1d.h:49
SumMode
Enum used to control how to sum polynomial terms.
Definition: SafeSum.h:32
A 1-d function defined by a series expansion and its coefficients.
Definition: Function1d.h:42
FastFinder::Iterator Iterator
Definition: FastFinder.cc:179
const_iterator cend() const
Iterators over coefficients.
Definition: Function1d.h:92
A base class for image defects.
std::size_t size() const
Return the number of coefficients.
Definition: Function1d.h:101
Basis const & getBasis() const
Return the associated Basis1d object.
Definition: Function1d.h:98
Function1d(Basis const &basis, Eigen::VectorXd const &coefficients)
Construct with coefficients from an Eigen object.
Definition: Function1d.h:58
auto getCoefficients() const
Return the coefficient vector as an Eigen matrix-like object.
Definition: Function1d.h:129
Function1d(Basis const &basis, Iterator first, Iterator last)
Construct by copying coefficients from an STL iterator range.
Definition: Function1d.h:67
double const & operator[](std::size_t n) const
Return the coefficient associated with the nth basis function.
Definition: Function1d.h:115
table::Key< table::Array< double > > basis
Definition: PsfexPsf.cc:361
const_iterator begin() const
Iterators over coefficients.
Definition: Function1d.h:93
Function1d< Basis > makeFunction1d(Basis const &basis, Eigen::VectorXd const &coefficients)
Create a Function1d of the appropriate type from a Basis1d and an Eigen object containing coefficient...
Definition: Function1d.h:144
double x
iterator begin()
Iterators over coefficients.
Definition: Function1d.h:89
table::Key< double > scaling
A 1-d affine transform that can be used to map one interval to another.
Definition: Scaling1d.h:46
iterator end()
Iterators over coefficients.
Definition: Function1d.h:90
const_iterator end() const
Iterators over coefficients.
Definition: Function1d.h:94
double operator()(double x, SumMode mode=SumMode::FAST) const
Evaluate the function at the given point.
Definition: Function1d.h:104
const_iterator cbegin() const
Iterators over coefficients.
Definition: Function1d.h:91
ndarray::Array< double const, 2, 2 > coefficients