LSSTApplications  17.0+124,17.0+14,17.0+73,18.0.0+37,18.0.0+80,18.0.0-4-g68ffd23+4,18.1.0-1-g0001055+12,18.1.0-1-g03d53ef+5,18.1.0-1-g1349e88+55,18.1.0-1-g2505f39+44,18.1.0-1-g5315e5e+4,18.1.0-1-g5e4b7ea+14,18.1.0-1-g7e8fceb+4,18.1.0-1-g85f8cd4+48,18.1.0-1-g8ff0b9f+4,18.1.0-1-ga2c679d+1,18.1.0-1-gd55f500+35,18.1.0-10-gb58edde+2,18.1.0-11-g0997b02+4,18.1.0-13-gfe4edf0b+12,18.1.0-14-g259bd21+21,18.1.0-19-gdb69f3f+2,18.1.0-2-g5f9922c+24,18.1.0-2-gd3b74e5+11,18.1.0-2-gfbf3545+32,18.1.0-26-g728bddb4+5,18.1.0-27-g6ff7ca9+2,18.1.0-3-g52aa583+25,18.1.0-3-g8ea57af+9,18.1.0-3-gb69f684+42,18.1.0-3-gfcaddf3+6,18.1.0-32-gd8786685a,18.1.0-4-gf3f9b77+6,18.1.0-5-g1dd662b+2,18.1.0-5-g6dbcb01+41,18.1.0-6-gae77429+3,18.1.0-7-g9d75d83+9,18.1.0-7-gae09a6d+30,18.1.0-9-gc381ef5+4,w.2019.45
LSSTDataManagementBasePackage
Function2d.h
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 /*
3  * Developed for the LSST Data Management System.
4  * This product includes software developed by the LSST Project
5  * (https://www.lsst.org).
6  * See the COPYRIGHT file at the top-level directory of this distribution
7  * for details of code ownership.
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program. If not, see <https://www.gnu.org/licenses/>.
21  */
22 #ifndef LSST_AFW_MATH_POLYNOMIALS_Function2d_h_INCLUDED
23 #define LSST_AFW_MATH_POLYNOMIALS_Function2d_h_INCLUDED
24 
25 #include "Eigen/Core"
28 
29 namespace lsst { namespace geom { namespace polynomials {
30 
41 template <typename Basis_>
42 class Function2d {
43 public:
44 
45  using iterator = double *;
46  using const_iterator = double const *;
47 
49  using Basis = Basis_;
50 
52  using Workspace = typename Basis::Workspace;
53 
55  explicit Function2d(Basis const & basis) :
56  _basis(basis),
57  _coefficients(Eigen::VectorXd::Zero(basis.size()))
58  {}
59 
61  explicit Function2d(Basis const & basis, Eigen::VectorXd const & coefficients) :
62  _basis(basis),
63  _coefficients(coefficients)
64  {
65  assert(basis.size() == static_cast<std::size_t>(_coefficients.size()));
66  }
67 
69  template <typename Iterator>
70  explicit Function2d(Basis const & basis, Iterator first, Iterator last) :
71  _basis(basis),
72  _coefficients(basis.size())
73  {
74  assert(std::distance(first, last) == static_cast<std::ptrdiff_t>(basis.size()));
75  std::copy(first, last, &_coefficients[0]);
76  }
77 
79  Function2d(Function2d const &) = default;
80 
82  Function2d(Function2d &&) = default;
83 
85  Function2d & operator=(Function2d const &) = default;
86 
88  Function2d & operator=(Function2d &&) = default;
89 
91  iterator begin() { return _coefficients.data(); }
93  iterator end() { return begin() + size(); }
94  const_iterator cbegin() const { return _coefficients.data(); }
95  const_iterator cend() const { return begin() + size(); }
96  const_iterator begin() const { return _coefficients.data(); }
97  const_iterator end() const { return begin() + size(); }
99 
101  Basis const & getBasis() const { return _basis; }
102 
104  std::size_t size() const { return _basis.size(); }
105 
107  Workspace makeWorkspace() const { return _basis.makeWorkspace(); }
108 
110  double operator()(geom::Point2D const & point, SumMode mode=SumMode::FAST) const {
111  return _basis.sumWith(point, _coefficients, mode);
112  }
113 
115  double operator()(geom::Point2D const & point, Workspace & workspace, SumMode mode=SumMode::FAST) const {
116  return _basis.sumWith(point, _coefficients, workspace, mode);
117  }
118 
120 
125  double & operator[](std::size_t n) { return begin()[n]; }
126  double const & operator[](std::size_t n) const { return begin()[n]; }
128 
130 
137  // Return a block view to ensure the caller only modify the values, not the size.
138  return _coefficients.head(size());
139  }
140  auto getCoefficients() const { return _coefficients.head(size()); }
142 
145  return Function2d<typename Basis::Scaled>(getBasis().scaled(scaling), _coefficients);
146  }
147 
148 private:
149  Basis _basis;
150  Eigen::VectorXd _coefficients;
151 };
152 
154 template <typename Basis>
155 Function2d<Basis> makeFunction2d(Basis const & basis, Eigen::VectorXd const & coefficients) {
157 }
158 
160 template <typename Basis, typename Iterator>
162  return Function2d<Basis>(basis, first, last);
163 }
164 
165 }}} // namespace lsst::geom::polynomials
166 
167 #endif // !LSST_AFW_MATH_POLYNOMIALS_Function2d_h_INCLUDED
const_iterator end() const
Iterators over coefficients.
Definition: Function2d.h:97
iterator begin()
Iterators over coefficients.
Definition: Function2d.h:92
auto getCoefficients() const
Return the coefficient vector as an Eigen matrix-like object.
Definition: Function2d.h:140
Basis_ Basis
The basis type used by this function.
Definition: Function2d.h:49
T copy(T... args)
T distance(T... args)
double operator()(geom::Point2D const &point, SumMode mode=SumMode::FAST) const
Evaluate the function at the given point.
Definition: Function2d.h:110
double const & operator[](std::size_t n) const
Return the coefficient associated with the nth basis function.
Definition: Function2d.h:126
Summation using regular floating-point addition.
Function2d(Basis const &basis, Iterator first, Iterator last)
Construct by copying coefficients from an STL iterator range.
Definition: Function2d.h:70
A 2-d function defined by a series expansion and its coefficients.
Definition: Function2d.h:42
double & operator[](std::size_t n)
Return the coefficient associated with the nth basis function.
Definition: Function2d.h:125
const_iterator cbegin() const
Iterators over coefficients.
Definition: Function2d.h:94
SumMode
Enum used to control how to sum polynomial terms.
Definition: SafeSum.h:32
FastFinder::Iterator Iterator
Definition: FastFinder.cc:179
Function2d< Basis > makeFunction2d(Basis const &basis, Eigen::VectorXd const &coefficients)
Create a Function2d of the appropriate type from a Basis2d and an Eigen object containing coefficient...
Definition: Function2d.h:155
A 2-d separable affine transform that can be used to map one interval to another. ...
Definition: Scaling2d.h:48
typename Basis::Workspace Workspace
Type returned by makeWorkspace().
Definition: Function2d.h:52
A base class for image defects.
std::size_t size() const
Return the number of coefficients.
Definition: Function2d.h:104
table::Key< table::Array< double > > basis
Definition: PsfexPsf.cc:361
table::Key< double > scaling
double operator()(geom::Point2D const &point, Workspace &workspace, SumMode mode=SumMode::FAST) const
Evaluate the function at the given point.
Definition: Function2d.h:115
Function2d(Basis const &basis)
Construct with zero-valued coefficients.
Definition: Function2d.h:55
const_iterator cend() const
Iterators over coefficients.
Definition: Function2d.h:95
Function2d & operator=(Function2d const &)=default
Default copy assignment.
iterator end()
Iterators over coefficients.
Definition: Function2d.h:93
const_iterator begin() const
Iterators over coefficients.
Definition: Function2d.h:96
Basis const & getBasis() const
Return the associated Basis2d object.
Definition: Function2d.h:101
Workspace makeWorkspace() const
Allocate workspace that can be passed to operator() to avoid repeated memory allocations.
Definition: Function2d.h:107
Function2d< typename Basis::Scaled > scaled(Scaling2d const &scaling) const
Return a new function that applies the given scaling to all points before evaluation.
Definition: Function2d.h:144
Function2d(Basis const &basis, Eigen::VectorXd const &coefficients)
Construct with coefficients from an Eigen object.
Definition: Function2d.h:61
auto getCoefficients()
Return the coefficient vector as an Eigen matrix-like object.
Definition: Function2d.h:136
ndarray::Array< double const, 2, 2 > coefficients