LSSTApplications  17.0+124,17.0+14,17.0+73,18.0.0+37,18.0.0+80,18.0.0-4-g68ffd23+4,18.1.0-1-g0001055+12,18.1.0-1-g03d53ef+5,18.1.0-1-g1349e88+55,18.1.0-1-g2505f39+44,18.1.0-1-g5315e5e+4,18.1.0-1-g5e4b7ea+14,18.1.0-1-g7e8fceb+4,18.1.0-1-g85f8cd4+48,18.1.0-1-g8ff0b9f+4,18.1.0-1-ga2c679d+1,18.1.0-1-gd55f500+35,18.1.0-10-gb58edde+2,18.1.0-11-g0997b02+4,18.1.0-13-gfe4edf0b+12,18.1.0-14-g259bd21+21,18.1.0-19-gdb69f3f+2,18.1.0-2-g5f9922c+24,18.1.0-2-gd3b74e5+11,18.1.0-2-gfbf3545+32,18.1.0-26-g728bddb4+5,18.1.0-27-g6ff7ca9+2,18.1.0-3-g52aa583+25,18.1.0-3-g8ea57af+9,18.1.0-3-gb69f684+42,18.1.0-3-gfcaddf3+6,18.1.0-32-gd8786685a,18.1.0-4-gf3f9b77+6,18.1.0-5-g1dd662b+2,18.1.0-5-g6dbcb01+41,18.1.0-6-gae77429+3,18.1.0-7-g9d75d83+9,18.1.0-7-gae09a6d+30,18.1.0-9-gc381ef5+4,w.2019.45
LSSTDataManagementBasePackage
PolynomialFunction2d.cc
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 /*
3  * Developed for the LSST Data Management System.
4  * This product includes software developed by the LSST Project
5  * (https://www.lsst.org).
6  * See the COPYRIGHT file at the top-level directory of this distribution
7  * for details of code ownership.
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program. If not, see <https://www.gnu.org/licenses/>.
21  */
22 
23 #include <vector>
24 
28 
29 
30 namespace lsst { namespace geom { namespace polynomials {
31 
32 namespace {
33 
34 Eigen::VectorXd computePowers(double x, int n) {
35  Eigen::VectorXd r(n + 1);
36  r[0] = 1.0;
37  for (int i = 1; i <= n; ++i) {
38  r[i] = r[i - 1]*x;
39  }
40  return r;
41 }
42 
43 } // anonymous
44 
45 
46 template <PackingOrder packing>
48  auto const & basis = f.getBasis();
49  std::vector<SafeSum<double>> sums(basis.size());
50  std::size_t const n = basis.getOrder();
51  auto rPow = computePowers(basis.getScaling().getX().getScale(), n);
52  auto sPow = computePowers(basis.getScaling().getY().getScale(), n);
53  auto uPow = computePowers(basis.getScaling().getX().getShift(), n);
54  auto vPow = computePowers(basis.getScaling().getY().getShift(), n);
55  BinomialMatrix binomial(basis.getNested().getOrder());
56  for (auto const & i : basis.getIndices()) {
57  for (std::size_t j = 0; j <= i.nx; ++j) {
58  double tmp = binomial(i.nx, j)*uPow[j] *
59  f[i.flat]*rPow[i.nx]*sPow[i.ny];
60  for (std::size_t k = 0; k <= i.ny; ++k) {
61  sums[basis.index(i.nx - j, i.ny - k)] +=
62  binomial(i.ny, k)*vPow[k]*tmp;
63  }
64  }
65  }
66  Eigen::VectorXd result = Eigen::VectorXd::Zero(basis.size());
67  for (std::size_t i = 0; i < basis.size(); ++i) {
68  result[i] = static_cast<double>(sums[i]);
69  }
70  return makeFunction2d(basis.getNested(), result);
71 }
72 
75 );
78 );
79 
80 }}} // namespace lsst::geom::polynomials
A 2-d function defined by a series expansion and its coefficients.
Definition: Function2d.h:42
PolynomialFunction1d simplified(ScaledPolynomialFunction1d const &f)
Calculate the standard polynomial function that is equivalent to a scaled standard polynomial functio...
Function2d< Basis > makeFunction2d(Basis const &basis, Eigen::VectorXd const &coefficients)
Create a Function2d of the appropriate type from a Basis2d and an Eigen object containing coefficient...
Definition: Function2d.h:155
A base class for image defects.
A class that computes binomial coefficients up to a certain power.
table::Key< table::Array< double > > basis
Definition: PsfexPsf.cc:361
double x
STL class.
Basis const & getBasis() const
Return the associated Basis2d object.
Definition: Function2d.h:101
py::object result
Definition: _schema.cc:429
void computePowers(Eigen::VectorXd &r, double x)
Fill an array with integer powers of x, so .