LSSTApplications  17.0+124,17.0+14,17.0+73,18.0.0+37,18.0.0+80,18.0.0-4-g68ffd23+4,18.1.0-1-g0001055+12,18.1.0-1-g03d53ef+5,18.1.0-1-g1349e88+55,18.1.0-1-g2505f39+44,18.1.0-1-g5315e5e+4,18.1.0-1-g5e4b7ea+14,18.1.0-1-g7e8fceb+4,18.1.0-1-g85f8cd4+48,18.1.0-1-g8ff0b9f+4,18.1.0-1-ga2c679d+1,18.1.0-1-gd55f500+35,18.1.0-10-gb58edde+2,18.1.0-11-g0997b02+4,18.1.0-13-gfe4edf0b+12,18.1.0-14-g259bd21+21,18.1.0-19-gdb69f3f+2,18.1.0-2-g5f9922c+24,18.1.0-2-gd3b74e5+11,18.1.0-2-gfbf3545+32,18.1.0-26-g728bddb4+5,18.1.0-27-g6ff7ca9+2,18.1.0-3-g52aa583+25,18.1.0-3-g8ea57af+9,18.1.0-3-gb69f684+42,18.1.0-3-gfcaddf3+6,18.1.0-32-gd8786685a,18.1.0-4-gf3f9b77+6,18.1.0-5-g1dd662b+2,18.1.0-5-g6dbcb01+41,18.1.0-6-gae77429+3,18.1.0-7-g9d75d83+9,18.1.0-7-gae09a6d+30,18.1.0-9-gc381ef5+4,w.2019.45
LSSTDataManagementBasePackage
PolynomialTransform.h
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 
3 /*
4  * LSST Data Management System
5  * Copyright 2016 LSST/AURA
6  *
7  * This product includes software developed by the
8  * LSST Project (http://www.lsst.org/).
9  *
10  * This program is free software: you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, either version 3 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the LSST License Statement and
21  * the GNU General Public License along with this program. If not,
22  * see <http://www.lsstcorp.org/LegalNotices/>.
23  */
24 #ifndef LSST_MEAS_ASTROM_PolynomialTransform_INCLUDED
25 #define LSST_MEAS_ASTROM_PolynomialTransform_INCLUDED
26 
27 #include "ndarray/eigen.h"
28 #include "lsst/geom/Point.h"
30 
31 namespace lsst {
32 namespace meas {
33 namespace astrom {
34 
35 class SipForwardTransform;
36 class SipReverseTransform;
37 class ScaledPolynomialTransform;
38 
46 public:
51 
55  static PolynomialTransform convert(SipForwardTransform const& other);
56 
60  static PolynomialTransform convert(SipReverseTransform const& other);
61 
72  PolynomialTransform(ndarray::Array<double const, 2, 0> const& xCoeffs,
73  ndarray::Array<double const, 2, 0> const& yCoeffs);
74 
81 
88 
95 
102 
104  void swap(PolynomialTransform& other);
105 
107  int getOrder() const { return _xCoeffs.getSize<0>() - 1; }
108 
115  ndarray::Array<double const, 2, 2> getXCoeffs() const { return _xCoeffs.shallow(); }
116 
123  ndarray::Array<double const, 2, 2> getYCoeffs() const { return _yCoeffs.shallow(); }
124 
129 
133  geom::Point2D operator()(geom::Point2D const& in) const;
134 
135 private:
136  PolynomialTransform(int order);
137 
141  friend class SipForwardTransform;
142  friend class SipReverseTransform;
144 
145  ndarray::Array<double, 2, 2> _xCoeffs;
146  ndarray::Array<double, 2, 2> _yCoeffs;
147  mutable Eigen::VectorXd _u; // workspace for operator() and linearize
148  mutable Eigen::VectorXd _v;
149 };
150 
158 public:
166 
174  static ScaledPolynomialTransform convert(SipForwardTransform const& sipForward);
175 
183  static ScaledPolynomialTransform convert(SipReverseTransform const& sipReverse);
184 
196  geom::AffineTransform const& outputScalingInverse);
197 
199 
201 
203 
205 
206  void swap(ScaledPolynomialTransform& other);
207 
209  PolynomialTransform const& getPoly() const { return _poly; }
210 
212  geom::AffineTransform const& getInputScaling() const { return _inputScaling; }
213 
215  geom::AffineTransform const& getOutputScalingInverse() const { return _outputScalingInverse; }
216 
221 
225  geom::Point2D operator()(geom::Point2D const& in) const;
226 
227 private:
229  PolynomialTransform _poly;
230  geom::AffineTransform _inputScaling;
231  geom::AffineTransform _outputScalingInverse;
232 };
233 
241 
249 
250 } // namespace astrom
251 } // namespace meas
252 } // namespace lsst
253 
254 #endif // !LSST_MEAS_ASTROM_PolynomialTransform_INCLUDED
Low-level polynomials (including special polynomials) in C++.
Definition: Basis1d.h:26
An affine coordinate transformation consisting of a linear transformation and an offset.
PolynomialTransform const & getPoly() const
Return the polynomial transform applied after the input scaling.
ItemVariant const * other
Definition: Schema.cc:56
A fitter class for scaled polynomial transforms.
geom::AffineTransform const & getInputScaling() const
Return the first affine transform applied to input points.
A transform that maps pixel coordinates to intermediate world coordinates according to the SIP conven...
Definition: SipTransform.h:136
geom::AffineTransform const & getOutputScalingInverse() const
Return the affine transform applied to points after the polynomial transform.
PolynomialTransform(ndarray::Array< double const, 2, 0 > const &xCoeffs, ndarray::Array< double const, 2, 0 > const &yCoeffs)
Construct a new transform from existing coefficient arrays.
A base class for image defects.
void swap(PolynomialTransform &other)
Lightweight swap.
PolynomialTransform & operator=(PolynomialTransform const &other)
Copy assignment.
static PolynomialTransform convert(ScaledPolynomialTransform const &other)
Convert a ScaledPolynomialTransform to an equivalent PolynomialTransform.
A 2-d coordinate transform represented by a lazy composition of an AffineTransform, a PolynomialTransform, and another AffineTransform.
A transform that maps intermediate world coordinates to pixel coordinates according to the SIP conven...
Definition: SipTransform.h:246
geom::Point2D operator()(geom::Point2D const &in) const
Apply the transform to a point.
ndarray::Array< double const, 2, 2 > getXCoeffs() const
2-D polynomial coefficients that compute the output x coordinate.
ndarray::Array< double const, 2, 2 > getYCoeffs() const
2-D polynomial coefficients that compute the output x coordinate.
geom::AffineTransform linearize(geom::Point2D const &in) const
Return an approximate affine transform at the given point.
int getOrder() const
Return the order of the polynomials.
friend PolynomialTransform compose(geom::AffineTransform const &t1, PolynomialTransform const &t2)
Return a PolynomialTransform that is equivalent to the composition t1(t2())
A 2-d coordinate transform represented by a pair of standard polynomials (one for each coordinate)...