LSSTApplications  17.0+124,17.0+14,17.0+73,18.0.0+37,18.0.0+80,18.0.0-4-g68ffd23+4,18.1.0-1-g0001055+12,18.1.0-1-g03d53ef+5,18.1.0-1-g1349e88+55,18.1.0-1-g2505f39+44,18.1.0-1-g5315e5e+4,18.1.0-1-g5e4b7ea+14,18.1.0-1-g7e8fceb+4,18.1.0-1-g85f8cd4+48,18.1.0-1-g8ff0b9f+4,18.1.0-1-ga2c679d+1,18.1.0-1-gd55f500+35,18.1.0-10-gb58edde+2,18.1.0-11-g0997b02+4,18.1.0-13-gfe4edf0b+12,18.1.0-14-g259bd21+21,18.1.0-19-gdb69f3f+2,18.1.0-2-g5f9922c+24,18.1.0-2-gd3b74e5+11,18.1.0-2-gfbf3545+32,18.1.0-26-g728bddb4+5,18.1.0-27-g6ff7ca9+2,18.1.0-3-g52aa583+25,18.1.0-3-g8ea57af+9,18.1.0-3-gb69f684+42,18.1.0-3-gfcaddf3+6,18.1.0-32-gd8786685a,18.1.0-4-gf3f9b77+6,18.1.0-5-g1dd662b+2,18.1.0-5-g6dbcb01+41,18.1.0-6-gae77429+3,18.1.0-7-g9d75d83+9,18.1.0-7-gae09a6d+30,18.1.0-9-gc381ef5+4,w.2019.45
LSSTDataManagementBasePackage
Transformer.cc
Go to the documentation of this file.
1 // -*- lsst-c++ -*-
2 
3 /*
4  * LSST Data Management System
5  * Copyright 2008, 2009, 2010 LSST Corporation.
6  *
7  * This product includes software developed by the
8  * LSST Project (http://www.lsst.org/).
9  *
10  * This program is free software: you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, either version 3 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the LSST License Statement and
21  * the GNU General Public License along with this program. If not,
22  * see <http://www.lsstcorp.org/LegalNotices/>.
23  */
25 
26 #include "Eigen/LU"
27 
28 namespace lsst {
29 namespace afw {
30 namespace geom {
31 namespace ellipses {
32 
35  apply(*r);
36  return r;
37 }
38 
40 
42  Eigen::Matrix2d m;
43  input._assignToQuadrupole(m(0, 0), m(1, 1), m(0, 1));
44  m(1, 0) = m(0, 1);
45  m = transform.getMatrix() * m * transform.getMatrix().transpose();
46  result._assignFromQuadrupole(m(0, 0), m(1, 1), m(0, 1));
47 }
48 
51  Eigen::Matrix2d m;
52  Jacobian rhs = input._dAssignToQuadrupole(m(0, 0), m(1, 1), m(0, 1));
53  m(1, 0) = m(0, 1);
54  m = transform.getMatrix() * m * transform.getMatrix().transpose();
55  Jacobian lhs = output->_dAssignFromQuadrupole(m(0, 0), m(1, 1), m(0, 1));
56  Jacobian mid = Jacobian::Zero();
58  mid(0, 1) = transform[lsst::geom::LinearTransform::XY] * transform[lsst::geom::LinearTransform::XY];
59  mid(0, 2) = 2 * transform[lsst::geom::LinearTransform::XY] * transform[lsst::geom::LinearTransform::XX];
60  mid(1, 0) = transform[lsst::geom::LinearTransform::YX] * transform[lsst::geom::LinearTransform::YX];
61  mid(1, 1) = transform[lsst::geom::LinearTransform::YY] * transform[lsst::geom::LinearTransform::YY];
62  mid(1, 2) = 2 * transform[lsst::geom::LinearTransform::YY] * transform[lsst::geom::LinearTransform::YX];
63  mid(2, 0) = transform[lsst::geom::LinearTransform::YX] * transform[lsst::geom::LinearTransform::XX];
64  mid(2, 1) = transform[lsst::geom::LinearTransform::YY] * transform[lsst::geom::LinearTransform::XY];
65  mid(2, 2) = transform[lsst::geom::LinearTransform::XX] * transform[lsst::geom::LinearTransform::YY] +
67  return lhs * mid * rhs;
68 }
69 
72  Eigen::Matrix2d m;
73  input._assignToQuadrupole(m(0, 0), m(1, 1), m(0, 1));
74  Eigen::Matrix<double, 3, 4> mid = Eigen::Matrix<double, 3, 4>::Zero();
75  m(1, 0) = m(0, 1);
92  m = transform.getMatrix() * m * transform.getMatrix().transpose();
93  Jacobian lhs = output->_dAssignFromQuadrupole(m(0, 0), m(1, 1), m(0, 1));
94  return lhs * mid;
95 }
96 
98  std::shared_ptr<Ellipse> r = std::make_shared<Ellipse>(
99  input.getCore().transform(transform.getLinear()).copy(), transform(input.getCenter()));
100  return r;
101 }
102 
104  input.setCenter(transform(input.getCenter()));
105  input.getCore().transform(transform.getLinear()).inPlace();
106 }
107 
109  DerivativeMatrix r = DerivativeMatrix::Zero();
110  r.block<2, 2>(3, 3) = transform.getLinear().getMatrix();
111  r.block<3, 3>(0, 0) = input.getCore().transform(transform.getLinear()).d();
112  return r;
113 }
114 
116  TransformDerivativeMatrix r = TransformDerivativeMatrix::Zero();
117  r.block<2, 6>(3, 0) = transform.dTransform(input.getCenter());
118  r.block<3, 4>(0, 0) = input.getCore().transform(transform.getLinear()).dTransform();
119  return r;
120 }
121 } // namespace ellipses
122 } // namespace geom
123 } // namespace afw
124 } // namespace lsst
Eigen::Matrix< double, 5, 5 > DerivativeMatrix
Matrix type for derivative with respect to input ellipse parameters.
Definition: Transformer.h:89
virtual Jacobian _dAssignToQuadrupole(double &ixx, double &iyy, double &ixy) const =0
BaseCore & input
input core to be transformed
Definition: Transformer.h:75
lsst::geom::LinearTransform const & transform
transform object
Definition: Transformer.h:76
std::shared_ptr< BaseCore > clone() const
Deep-copy the Core.
Definition: BaseCore.h:82
Eigen::Matrix3d DerivativeMatrix
Matrix type for derivative with respect to input ellipse parameters.
Definition: Transformer.h:52
TransformDerivativeMatrix dTransform() const
Return the derivative of transformed core with respect to transform parameters.
Definition: Transformer.cc:70
TransformDerivativeMatrix dTransform() const
Return the derivative of transform output ellipse with respect to transform parameters.
Definition: Transformer.cc:115
void inPlace()
Transform the ellipse core in-place.
Definition: Transformer.cc:39
A base class for image defects.
std::shared_ptr< Ellipse > copy() const
Return a new transformed ellipse.
Definition: Transformer.cc:97
void inPlace()
Transform the ellipse in-place.
Definition: Transformer.cc:103
Eigen::Matrix< double, 5, 6 > TransformDerivativeMatrix
Matrix type for derivative with respect to transform parameters.
Definition: Transformer.h:92
Eigen::Matrix3d Jacobian
Parameter Jacobian matrix type.
Definition: BaseCore.h:64
Transformer transform(lsst::geom::LinearTransform const &transform)
Definition: Transformer.h:116
Eigen::Matrix< double, 3, 4 > TransformDerivativeMatrix
Matrix type for derivative with respect to transform parameters.
Definition: Transformer.h:55
A base class for parametrizations of the "core" of an ellipse - the ellipticity and size...
Definition: BaseCore.h:55
int m
Definition: SpanSet.cc:49
std::shared_ptr< BaseCore > copy() const
Return a new transformed ellipse core.
Definition: Transformer.cc:33
virtual void _assignToQuadrupole(double &ixx, double &iyy, double &ixy) const =0
py::object result
Definition: _schema.cc:429
DerivativeMatrix d() const
Return the derivative of transformed core with respect to input core.
Definition: Transformer.cc:49
virtual void _assignFromQuadrupole(double ixx, double iyy, double ixy)=0
DerivativeMatrix d() const
Return the derivative of transform output ellipse with respect to input ellipse.
Definition: Transformer.cc:108