24 import lsst.pex.config
as pexConfig
33 from .coaddBase
import CoaddBaseTask, makeSkyInfo
34 from .warpAndPsfMatch
import WarpAndPsfMatchTask
35 from .coaddHelpers
import groupPatchExposures, getGroupDataRef
37 __all__ = [
"MakeCoaddTempExpTask",
"MakeWarpTask",
"MakeWarpConfig"]
41 """Raised when data cannot be retrieved for an exposure. 42 When processing patches, sometimes one exposure is missing; this lets us 43 distinguish bewteen that case, and other errors. 49 """Config for MakeCoaddTempExpTask 51 warpAndPsfMatch = pexConfig.ConfigurableField(
52 target=WarpAndPsfMatchTask,
53 doc=
"Task to warp and PSF-match calexp",
55 doWrite = pexConfig.Field(
56 doc=
"persist <coaddName>Coadd_<warpType>Warp",
60 bgSubtracted = pexConfig.Field(
61 doc=
"Work with a background subtracted calexp?",
65 coaddPsf = pexConfig.ConfigField(
66 doc=
"Configuration for CoaddPsf",
69 makeDirect = pexConfig.Field(
70 doc=
"Make direct Warp/Coadds",
74 makePsfMatched = pexConfig.Field(
75 doc=
"Make Psf-Matched Warp/Coadd?",
80 doWriteEmptyWarps = pexConfig.Field(
83 doc=
"Write out warps even if they are empty" 86 hasFakes = pexConfig.Field(
87 doc=
"Should be set to True if fake sources have been inserted into the input data.",
91 doApplySkyCorr = pexConfig.Field(dtype=bool, default=
False, doc=
"Apply sky correction?")
94 CoaddBaseTask.ConfigClass.validate(self)
96 raise RuntimeError(
"At least one of config.makePsfMatched and config.makeDirect must be True")
99 log.warn(
"Config doPsfMatch deprecated. Setting makePsfMatched=True and makeDirect=False")
104 CoaddBaseTask.ConfigClass.setDefaults(self)
105 self.
warpAndPsfMatch.psfMatch.kernel.active.kernelSize = self.matchingKernelSize
116 r"""!Warp and optionally PSF-Match calexps onto an a common projection. 118 @anchor MakeCoaddTempExpTask_ 120 @section pipe_tasks_makeCoaddTempExp_Contents Contents 122 - @ref pipe_tasks_makeCoaddTempExp_Purpose 123 - @ref pipe_tasks_makeCoaddTempExp_Initialize 124 - @ref pipe_tasks_makeCoaddTempExp_IO 125 - @ref pipe_tasks_makeCoaddTempExp_Config 126 - @ref pipe_tasks_makeCoaddTempExp_Debug 127 - @ref pipe_tasks_makeCoaddTempExp_Example 129 @section pipe_tasks_makeCoaddTempExp_Purpose Description 131 Warp and optionally PSF-Match calexps onto a common projection, by 132 performing the following operations: 133 - Group calexps by visit/run 134 - For each visit, generate a Warp by calling method @ref makeTempExp. 135 makeTempExp loops over the visit's calexps calling @ref WarpAndPsfMatch 138 The result is a `directWarp` (and/or optionally a `psfMatchedWarp`). 140 @section pipe_tasks_makeCoaddTempExp_Initialize Task Initialization 142 @copydoc \_\_init\_\_ 144 This task has one special keyword argument: passing reuse=True will cause 145 the task to skip the creation of warps that are already present in the 148 @section pipe_tasks_makeCoaddTempExp_IO Invoking the Task 150 This task is primarily designed to be run from the command line. 152 The main method is `runDataRef`, which takes a single butler data reference for the patch(es) 157 WarpType identifies the types of convolutions applied to Warps (previously CoaddTempExps). 158 Only two types are available: direct (for regular Warps/Coadds) and psfMatched 159 (for Warps/Coadds with homogenized PSFs). We expect to add a third type, likelihood, 160 for generating likelihood Coadds with Warps that have been correlated with their own PSF. 162 @section pipe_tasks_makeCoaddTempExp_Config Configuration parameters 164 See @ref MakeCoaddTempExpConfig and parameters inherited from 165 @link lsst.pipe.tasks.coaddBase.CoaddBaseConfig CoaddBaseConfig @endlink 167 @subsection pipe_tasks_MakeCoaddTempExp_psfMatching Guide to PSF-Matching Configs 169 To make `psfMatchedWarps`, select `config.makePsfMatched=True`. The subtask 170 @link lsst.ip.diffim.modelPsfMatch.ModelPsfMatchTask ModelPsfMatchTask @endlink 171 is responsible for the PSF-Matching, and its config is accessed via `config.warpAndPsfMatch.psfMatch`. 172 The optimal configuration depends on aspects of dataset: the pixel scale, average PSF FWHM and 173 dimensions of the PSF kernel. These configs include the requested model PSF, the matching kernel size, 174 padding of the science PSF thumbnail and spatial sampling frequency of the PSF. 176 *Config Guidelines*: The user must specify the size of the model PSF to which to match by setting 177 `config.modelPsf.defaultFwhm` in units of pixels. The appropriate values depends on science case. 178 In general, for a set of input images, this config should equal the FWHM of the visit 179 with the worst seeing. The smallest it should be set to is the median FWHM. The defaults 180 of the other config options offer a reasonable starting point. 181 The following list presents the most common problems that arise from a misconfigured 182 @link lsst.ip.diffim.modelPsfMatch.ModelPsfMatchTask ModelPsfMatchTask @endlink 183 and corresponding solutions. All assume the default Alard-Lupton kernel, with configs accessed via 184 ```config.warpAndPsfMatch.psfMatch.kernel['AL']```. Each item in the list is formatted as: 185 Problem: Explanation. *Solution* 187 *Troublshooting PSF-Matching Configuration:* 188 - Matched PSFs look boxy: The matching kernel is too small. _Increase the matching kernel size. 191 config.warpAndPsfMatch.psfMatch.kernel['AL'].kernelSize=27 # default 21 193 Note that increasing the kernel size also increases runtime. 194 - Matched PSFs look ugly (dipoles, quadropoles, donuts): unable to find good solution 195 for matching kernel. _Provide the matcher with more data by either increasing 196 the spatial sampling by decreasing the spatial cell size,_ 198 config.warpAndPsfMatch.psfMatch.kernel['AL'].sizeCellX = 64 # default 128 199 config.warpAndPsfMatch.psfMatch.kernel['AL'].sizeCellY = 64 # default 128 201 _or increasing the padding around the Science PSF, for example:_ 203 config.warpAndPsfMatch.psfMatch.autoPadPsfTo=1.6 # default 1.4 205 Increasing `autoPadPsfTo` increases the minimum ratio of input PSF dimensions to the 206 matching kernel dimensions, thus increasing the number of pixels available to fit 207 after convolving the PSF with the matching kernel. 208 Optionally, for debugging the effects of padding, the level of padding may be manually 209 controlled by setting turning off the automatic padding and setting the number 210 of pixels by which to pad the PSF: 212 config.warpAndPsfMatch.psfMatch.doAutoPadPsf = False # default True 213 config.warpAndPsfMatch.psfMatch.padPsfBy = 6 # pixels. default 0 215 - Deconvolution: Matching a large PSF to a smaller PSF produces 216 a telltale noise pattern which looks like ripples or a brain. 217 _Increase the size of the requested model PSF. For example:_ 219 config.modelPsf.defaultFwhm = 11 # Gaussian sigma in units of pixels. 221 - High frequency (sometimes checkered) noise: The matching basis functions are too small. 222 _Increase the width of the Gaussian basis functions. For example:_ 224 config.warpAndPsfMatch.psfMatch.kernel['AL'].alardSigGauss=[1.5, 3.0, 6.0] 225 # from default [0.7, 1.5, 3.0] 228 @section pipe_tasks_makeCoaddTempExp_Debug Debug variables 230 MakeCoaddTempExpTask has no debug output, but its subtasks do. 232 @section pipe_tasks_makeCoaddTempExp_Example A complete example of using MakeCoaddTempExpTask 234 This example uses the package ci_hsc to show how MakeCoaddTempExp fits 235 into the larger Data Release Processing. 240 # if not built already: 241 python $(which scons) # this will take a while 243 The following assumes that `processCcd.py` and `makeSkyMap.py` have previously been run 244 (e.g. by building `ci_hsc` above) to generate a repository of calexps and an 245 output respository with the desired SkyMap. The command, 247 makeCoaddTempExp.py $CI_HSC_DIR/DATA --rerun ci_hsc \ 248 --id patch=5,4 tract=0 filter=HSC-I \ 249 --selectId visit=903988 ccd=16 --selectId visit=903988 ccd=17 \ 250 --selectId visit=903988 ccd=23 --selectId visit=903988 ccd=24 \ 251 --config doApplyUberCal=False makePsfMatched=True modelPsf.defaultFwhm=11 253 writes a direct and PSF-Matched Warp to 254 - `$CI_HSC_DIR/DATA/rerun/ci_hsc/deepCoadd/HSC-I/0/5,4/warp-HSC-I-0-5,4-903988.fits` and 255 - `$CI_HSC_DIR/DATA/rerun/ci_hsc/deepCoadd/HSC-I/0/5,4/psfMatchedWarp-HSC-I-0-5,4-903988.fits` 258 @note PSF-Matching in this particular dataset would benefit from adding 259 `--configfile ./matchingConfig.py` to 260 the command line arguments where `matchingConfig.py` is defined by: 263 config.warpAndPsfMatch.psfMatch.kernel['AL'].kernelSize=27 264 config.warpAndPsfMatch.psfMatch.kernel['AL'].alardSigGauss=[1.5, 3.0, 6.0]" > matchingConfig.py 267 Add the option `--help` to see more options. 269 ConfigClass = MakeCoaddTempExpConfig
270 _DefaultName =
"makeCoaddTempExp" 273 CoaddBaseTask.__init__(self, **kwargs)
275 self.makeSubtask(
"warpAndPsfMatch")
276 if self.config.hasFakes:
283 """!Produce <coaddName>Coadd_<warpType>Warp images by warping and optionally PSF-matching. 285 @param[in] patchRef: data reference for sky map patch. Must include keys "tract", "patch", 286 plus the camera-specific filter key (e.g. "filter" or "band") 287 @return: dataRefList: a list of data references for the new <coaddName>Coadd_directWarps 288 if direct or both warp types are requested and <coaddName>Coadd_psfMatchedWarps if only psfMatched 291 @warning: this task assumes that all exposures in a warp (coaddTempExp) have the same filter. 293 @warning: this task sets the PhotoCalib of the coaddTempExp to the PhotoCalib of the first calexp 294 with any good pixels in the patch. For a mosaic camera the resulting PhotoCalib should be ignored 295 (assembleCoadd should determine zeropoint scaling without referring to it). 300 if self.config.makePsfMatched
and not self.config.makeDirect:
305 calExpRefList = self.
selectExposures(patchRef, skyInfo, selectDataList=selectDataList)
307 if len(calExpRefList) == 0:
308 self.log.
warn(
"No exposures to coadd for patch %s", patchRef.dataId)
310 self.log.
info(
"Selected %d calexps for patch %s", len(calExpRefList), patchRef.dataId)
311 calExpRefList = [calExpRef
for calExpRef
in calExpRefList
if calExpRef.datasetExists(self.
calexpType)]
312 self.log.
info(
"Processing %d existing calexps for patch %s", len(calExpRefList), patchRef.dataId)
316 self.log.
info(
"Processing %d warp exposures for patch %s", len(groupData.groups), patchRef.dataId)
319 for i, (tempExpTuple, calexpRefList)
in enumerate(groupData.groups.items()):
321 tempExpTuple, groupData.keys)
322 if self.
reuse and tempExpRef.datasetExists(datasetType=primaryWarpDataset, write=
True):
323 self.log.
info(
"Skipping makeCoaddTempExp for %s; output already exists.", tempExpRef.dataId)
324 dataRefList.append(tempExpRef)
326 self.log.
info(
"Processing Warp %d/%d: id=%s", i, len(groupData.groups), tempExpRef.dataId)
332 visitId = int(tempExpRef.dataId[
"visit"])
333 except (KeyError, ValueError):
340 for calExpInd, calExpRef
in enumerate(calexpRefList):
341 self.log.
info(
"Reading calexp %s of %s for Warp id=%s", calExpInd+1, len(calexpRefList),
344 ccdId = calExpRef.get(
"ccdExposureId", immediate=
True)
351 calExpRef = calExpRef.butlerSubset.butler.dataRef(self.
calexpType,
352 dataId=calExpRef.dataId,
353 tract=skyInfo.tractInfo.getId())
355 except Exception
as e:
356 self.log.
warn(
"Calexp %s not found; skipping it: %s", calExpRef.dataId, e)
359 if self.config.doApplySkyCorr:
362 calExpList.append(calExp)
363 ccdIdList.append(ccdId)
364 dataIdList.append(calExpRef.dataId)
366 exps = self.
run(calExpList, ccdIdList, skyInfo, visitId, dataIdList).exposures
368 if any(exps.values()):
369 dataRefList.append(tempExpRef)
371 self.log.
warn(
"Warp %s could not be created", tempExpRef.dataId)
373 if self.config.doWrite:
374 for (warpType, exposure)
in exps.items():
375 if exposure
is not None:
381 def run(self, calExpList, ccdIdList, skyInfo, visitId=0, dataIdList=None):
382 """Create a Warp from inputs 384 We iterate over the multiple calexps in a single exposure to construct 385 the warp (previously called a coaddTempExp) of that exposure to the 386 supplied tract/patch. 388 Pixels that receive no pixels are set to NAN; this is not correct 389 (violates LSST algorithms group policy), but will be fixed up by 390 interpolating after the coaddition. 392 @param calexpRefList: List of data references for calexps that (may) 393 overlap the patch of interest 394 @param skyInfo: Struct from CoaddBaseTask.getSkyInfo() with geometric 395 information about the patch 396 @param visitId: integer identifier for visit, for the table that will 398 @return a pipeBase Struct containing: 399 - exposures: a dictionary containing the warps requested: 400 "direct": direct warp if config.makeDirect 401 "psfMatched": PSF-matched warp if config.makePsfMatched 405 totGoodPix = {warpType: 0
for warpType
in warpTypeList}
406 didSetMetadata = {warpType:
False for warpType
in warpTypeList}
408 inputRecorder = {warpType: self.inputRecorder.makeCoaddTempExpRecorder(visitId, len(calExpList))
409 for warpType
in warpTypeList}
411 modelPsf = self.config.modelPsf.apply()
if self.config.makePsfMatched
else None 412 if dataIdList
is None:
413 dataIdList = ccdIdList
415 for calExpInd, (calExp, ccdId, dataId)
in enumerate(zip(calExpList, ccdIdList, dataIdList)):
416 self.log.
info(
"Processing calexp %d of %d for this Warp: id=%s",
417 calExpInd+1, len(calExpList), dataId)
420 warpedAndMatched = self.warpAndPsfMatch.
run(calExp, modelPsf=modelPsf,
421 wcs=skyInfo.wcs, maxBBox=skyInfo.bbox,
422 makeDirect=self.config.makeDirect,
423 makePsfMatched=self.config.makePsfMatched)
424 except Exception
as e:
425 self.log.
warn(
"WarpAndPsfMatch failed for calexp %s; skipping it: %s", dataId, e)
428 numGoodPix = {warpType: 0
for warpType
in warpTypeList}
429 for warpType
in warpTypeList:
430 exposure = warpedAndMatched.getDict()[warpType]
433 coaddTempExp = coaddTempExps[warpType]
434 if didSetMetadata[warpType]:
435 mimg = exposure.getMaskedImage()
436 mimg *= (coaddTempExp.getPhotoCalib().getInstFluxAtZeroMagnitude() /
437 exposure.getPhotoCalib().getInstFluxAtZeroMagnitude())
440 coaddTempExp.getMaskedImage(), exposure.getMaskedImage(), self.
getBadPixelMask())
441 totGoodPix[warpType] += numGoodPix[warpType]
442 self.log.
debug(
"Calexp %s has %d good pixels in this patch (%.1f%%) for %s",
443 dataId, numGoodPix[warpType],
444 100.0*numGoodPix[warpType]/skyInfo.bbox.getArea(), warpType)
445 if numGoodPix[warpType] > 0
and not didSetMetadata[warpType]:
446 coaddTempExp.setPhotoCalib(exposure.getPhotoCalib())
447 coaddTempExp.setFilter(exposure.getFilter())
448 coaddTempExp.getInfo().setVisitInfo(exposure.getInfo().getVisitInfo())
450 coaddTempExp.setPsf(exposure.getPsf())
451 didSetMetadata[warpType] =
True 454 inputRecorder[warpType].addCalExp(calExp, ccdId, numGoodPix[warpType])
456 except Exception
as e:
457 self.log.
warn(
"Error processing calexp %s; skipping it: %s", dataId, e)
460 for warpType
in warpTypeList:
461 self.log.
info(
"%sWarp has %d good pixels (%.1f%%)",
462 warpType, totGoodPix[warpType], 100.0*totGoodPix[warpType]/skyInfo.bbox.getArea())
464 if totGoodPix[warpType] > 0
and didSetMetadata[warpType]:
465 inputRecorder[warpType].finish(coaddTempExps[warpType], totGoodPix[warpType])
466 if warpType ==
"direct":
467 coaddTempExps[warpType].setPsf(
468 CoaddPsf(inputRecorder[warpType].coaddInputs.ccds, skyInfo.wcs,
469 self.config.coaddPsf.makeControl()))
471 if not self.config.doWriteEmptyWarps:
473 coaddTempExps[warpType] =
None 475 result = pipeBase.Struct(exposures=coaddTempExps)
479 """Return one calibrated Exposure, possibly with an updated SkyWcs. 481 @param[in] dataRef a sensor-level data reference 482 @param[in] bgSubtracted return calexp with background subtracted? If False get the 483 calexp's background background model and add it to the calexp. 484 @return calibrated exposure 486 @raises MissingExposureError If data for the exposure is not available. 488 If config.doApplyUberCal, the exposure will be photometrically 489 calibrated via the `jointcal_photoCalib` dataset and have its SkyWcs 490 updated to the `jointcal_wcs`, otherwise it will be calibrated via the 491 Exposure's own PhotoCalib and have the original SkyWcs. 494 exposure = dataRef.get(self.
calexpType, immediate=
True)
499 background = dataRef.get(
"calexpBackground", immediate=
True)
500 mi = exposure.getMaskedImage()
501 mi += background.getImage()
504 if self.config.doApplyUberCal:
505 if self.config.useMeasMosaic:
506 from lsst.meas.mosaic
import applyMosaicResultsExposure
509 calibrationErr = exposure.getPhotoCalib().getCalibrationErr()
511 applyMosaicResultsExposure(dataRef, calexp=exposure)
518 photoCalib = dataRef.get(
"jointcal_photoCalib")
519 skyWcs = dataRef.get(
"jointcal_wcs")
520 exposure.setWcs(skyWcs)
522 photoCalib = exposure.getPhotoCalib()
524 exposure.maskedImage = photoCalib.calibrateImage(exposure.maskedImage,
525 includeScaleUncertainty=self.config.includeCalibVar)
526 exposure.maskedImage /= photoCalib.getCalibrationMean()
527 exposure.setPhotoCalib(photoCalib)
533 def _prepareEmptyExposure(skyInfo):
534 """Produce an empty exposure for a given patch""" 535 exp = afwImage.ExposureF(skyInfo.bbox, skyInfo.wcs)
537 .getPlaneBitMask(
"NO_DATA"), numpy.inf)
541 """Return list of requested warp types per the config. 544 if self.config.makeDirect:
545 warpTypeList.append(
"direct")
546 if self.config.makePsfMatched:
547 warpTypeList.append(
"psfMatched")
551 """Apply correction to the sky background level 553 Sky corrections can be generated with the 'skyCorrection.py' 554 executable in pipe_drivers. Because the sky model used by that 555 code extends over the entire focal plane, this can produce 556 better sky subtraction. 558 The calexp is updated in-place. 562 dataRef : `lsst.daf.persistence.ButlerDataRef` 563 Data reference for calexp. 564 calexp : `lsst.afw.image.Exposure` or `lsst.afw.image.MaskedImage` 567 bg = dataRef.get(
"skyCorr")
569 calexp = calexp.getMaskedImage()
570 calexp -= bg.getImage()
574 dimensions=(
"tract",
"patch",
"skymap",
"instrument",
"visit"),
575 defaultTemplates={
"coaddName":
"deep"}):
576 calExpList = cT.Input(
577 doc=
"Input exposures to be resampled and optionally PSF-matched onto a SkyMap projection/patch",
579 storageClass=
"ExposureF",
580 dimensions=(
"instrument",
"visit",
"detector"),
583 backgroundList = cT.Input(
584 doc=
"Input backgrounds to be added back into the calexp if bgSubtracted=False",
585 name=
"calexpBackground",
586 storageClass=
"Background",
587 dimensions=(
"instrument",
"visit",
"detector"),
590 skyCorrList = cT.Input(
591 doc=
"Input Sky Correction to be subtracted from the calexp if doApplySkyCorr=True",
593 storageClass=
"Background",
594 dimensions=(
"instrument",
"visit",
"detector"),
598 doc=
"Input definition of geometry/bbox and projection/wcs for warped exposures",
599 name=
"{coaddName}Coadd_skyMap",
600 storageClass=
"SkyMap",
601 dimensions=(
"skymap",),
604 doc=(
"Output direct warped exposure (previously called CoaddTempExp), produced by resampling ",
605 "calexps onto the skyMap patch geometry."),
606 name=
"{coaddName}Coadd_directWarp",
607 storageClass=
"ExposureF",
608 dimensions=(
"tract",
"patch",
"skymap",
"visit",
"instrument"),
610 psfMatched = cT.Output(
611 doc=(
"Output PSF-Matched warped exposure (previously called CoaddTempExp), produced by resampling ",
612 "calexps onto the skyMap patch geometry and PSF-matching to a model PSF."),
613 name=
"{coaddName}Coadd_psfMatchedWarp",
614 storageClass=
"ExposureF",
615 dimensions=(
"tract",
"patch",
"skymap",
"visit",
"instrument"),
620 if config.bgSubtracted:
621 self.inputs.remove(
"backgroundList")
622 if not config.doApplySkyCorr:
623 self.inputs.remove(
"skyCorrList")
624 if not config.makeDirect:
625 self.outputs.remove(
"direct")
626 if not config.makePsfMatched:
627 self.outputs.remove(
"psfMatched")
631 pipelineConnections=MakeWarpConnections):
636 if self.doApplyUberCal:
637 raise RuntimeError(
"Gen3 MakeWarpTask cannot apply meas_mosaic or jointcal results." 638 "Please set doApplyUbercal=False.")
642 """Warp and optionally PSF-Match calexps onto an a common projection 644 First Draft of a Gen3 compatible MakeWarpTask which 645 currently does not handle doApplyUberCal=True. 647 ConfigClass = MakeWarpConfig
648 _DefaultName =
"makeWarp" 650 @utils.inheritDoc(pipeBase.PipelineTask)
651 def runQuantum(self, butlerQC, inputRefs, outputRefs):
655 Construct warps for requested warp type for single epoch 657 PipelineTask (Gen3) entry point to warp and optionally PSF-match 658 calexps. This method is analogous to `runDataRef`. 661 inputs = butlerQC.get(inputRefs)
665 skyMap = inputs.pop(
"skyMap")
666 quantumDataId = butlerQC.quantum.dataId
667 skyInfo =
makeSkyInfo(skyMap, tractId=quantumDataId[
'tract'], patchId=quantumDataId[
'patch'])
670 dataIdList = [ref.dataId
for ref
in inputRefs.calExpList]
673 ccdIdList = [dataId.pack(
"visit_detector")
for dataId
in dataIdList]
676 visits = [dataId[
'visit']
for dataId
in dataIdList]
677 assert(
all(visits[0] == visit
for visit
in visits))
680 self.prepareCalibratedExposures(**inputs)
681 results = self.run(**inputs, visitId=visitId, ccdIdList=ccdIdList, dataIdList=dataIdList,
683 if self.config.makeDirect:
684 butlerQC.put(results.exposures[
"direct"], outputRefs.direct)
685 if self.config.makePsfMatched:
686 butlerQC.put(results.exposures[
"psfMatched"], outputRefs.psfMatched)
688 def prepareCalibratedExposures(self, calExpList, backgroundList=None, skyCorrList=None):
689 """Calibrate and add backgrounds to input calExpList in place 691 TODO DM-17062: apply jointcal/meas_mosaic here 695 calExpList : `list` of `lsst.afw.image.Exposure` 696 Sequence of calexps to be modified in place 697 backgroundList : `list` of `lsst.afw.math.backgroundList` 698 Sequence of backgrounds to be added back in if bgSubtracted=False 699 skyCorrList : `list` of `lsst.afw.math.backgroundList` 700 Sequence of background corrections to be subtracted if doApplySkyCorr=True 702 backgroundList = len(calExpList)*[
None]
if backgroundList
is None else backgroundList
703 skyCorrList = len(calExpList)*[
None]
if skyCorrList
is None else skyCorrList
704 for calexp, background, skyCorr
in zip(calExpList, backgroundList, skyCorrList):
705 mi = calexp.maskedImage
706 if not self.config.bgSubtracted:
707 mi += background.getImage()
708 if self.config.doApplySkyCorr:
709 mi -= skyCorr.getImage()
def getCoaddDatasetName(self, warpType="direct")
def getGroupDataRef(butler, datasetType, groupTuple, keys)
Base class for coaddition.
The photometric calibration of an exposure.
A class to contain the data, WCS, and other information needed to describe an image of the sky...
def __init__(self, reuse=False, kwargs)
def makeSkyInfo(skyMap, tractId, patchId)
def _prepareEmptyExposure(skyInfo)
Fit spatial kernel using approximate fluxes for candidates, and solving a linear system of equations...
daf::base::PropertySet * set
Warp and optionally PSF-Match calexps onto an a common projection.
bool any(CoordinateExpr< N > const &expr) noexcept
Return true if any elements are true.
def getSkyInfo(self, patchRef)
Use getSkyinfo to return the skyMap, tract and patch information, wcs and the outer bbox of the patch...
def getTempExpDatasetName(self, warpType="direct")
bool all(CoordinateExpr< N > const &expr) noexcept
Return true if all elements are true.
def getBadPixelMask(self)
Convenience method to provide the bitmask from the mask plane names.
Represent a 2-dimensional array of bitmask pixels.
CoaddPsf is the Psf derived to be used for non-PSF-matched Coadd images.
def __init__(self, minimum, dataRange, Q)
def getCalibratedExposure(self, dataRef, bgSubtracted)
def selectExposures(self, patchRef, skyInfo=None, selectDataList=[])
Select exposures to coadd.
def runDataRef(self, patchRef, selectDataList=[])
Produce <coaddName>Coadd_<warpType>Warp images by warping and optionally PSF-matching.
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects...
def run(self, calExpList, ccdIdList, skyInfo, visitId=0, dataIdList=None)
int copyGoodPixels(lsst::afw::image::MaskedImage< ImagePixelT, lsst::afw::image::MaskPixel, lsst::afw::image::VariancePixel > &destImage, lsst::afw::image::MaskedImage< ImagePixelT, lsst::afw::image::MaskPixel, lsst::afw::image::VariancePixel > const &srcImage, lsst::afw::image::MaskPixel const badPixelMask)
copy good pixels from one masked image to another
def getWarpTypeList(self)
def groupPatchExposures(patchDataRef, calexpDataRefList, coaddDatasetType="deepCoadd", tempExpDatasetType="deepCoadd_directWarp")
def applySkyCorr(self, dataRef, calexp)