LSSTApplications  18.0.0+106,18.0.0+50,19.0.0,19.0.0+1,19.0.0+10,19.0.0+11,19.0.0+13,19.0.0+17,19.0.0+2,19.0.0-1-g20d9b18+6,19.0.0-1-g425ff20,19.0.0-1-g5549ca4,19.0.0-1-g580fafe+6,19.0.0-1-g6fe20d0+1,19.0.0-1-g7011481+9,19.0.0-1-g8c57eb9+6,19.0.0-1-gb5175dc+11,19.0.0-1-gdc0e4a7+9,19.0.0-1-ge272bc4+6,19.0.0-1-ge3aa853,19.0.0-10-g448f008b,19.0.0-12-g6990b2c,19.0.0-2-g0d9f9cd+11,19.0.0-2-g3d9e4fb2+11,19.0.0-2-g5037de4,19.0.0-2-gb96a1c4+3,19.0.0-2-gd955cfd+15,19.0.0-3-g2d13df8,19.0.0-3-g6f3c7dc,19.0.0-4-g725f80e+11,19.0.0-4-ga671dab3b+1,19.0.0-4-gad373c5+3,19.0.0-5-ga2acb9c+2,19.0.0-5-gfe96e6c+2,w.2020.01
LSSTDataManagementBasePackage
Likelihood.h
Go to the documentation of this file.
1 // -*- lsst-c++ -*-
2 /*
3  * LSST Data Management System
4  * Copyright 2008-2013 LSST Corporation.
5  *
6  * This product includes software developed by the
7  * LSST Project (http://www.lsst.org/).
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the LSST License Statement and
20  * the GNU General Public License along with this program. If not,
21  * see <http://www.lsstcorp.org/LegalNotices/>.
22  */
23 
24 #ifndef LSST_MEAS_MODELFIT_Likelihood_h_INCLUDED
25 #define LSST_MEAS_MODELFIT_Likelihood_h_INCLUDED
26 
27 #include "ndarray_fwd.h"
28 
29 #include "lsst/pex/exceptions.h"
32 
33 namespace lsst { namespace meas { namespace modelfit {
34 
70 {
71 public:
72 
74  int getDataDim() const { return _data.getSize<0>(); }
75 
77  int getAmplitudeDim() const { return _model->getAmplitudeDim(); }
78 
80  int getNonlinearDim() const { return _model->getNonlinearDim(); }
81 
83  int getFixedDim() const { return _model->getFixedDim(); }
84 
86  ndarray::Array<Scalar const,1,1> getFixed() const { return _fixed; }
87 
89  ndarray::Array<Pixel const,1,1> getData() const { return _data; }
90 
92  ndarray::Array<Pixel const,1,1> getUnweightedData() const { return _unweightedData; }
93 
99  ndarray::Array<Pixel const,1,1> getWeights() const { return _weights; }
100 
102  ndarray::Array<Pixel const,1,1> getVariance() const { return _variance; }
103 
105  PTR(Model) getModel() const { return _model; }
106 
120  virtual void computeModelMatrix(
121  ndarray::Array<Pixel,2,-1> const & modelMatrix,
122  ndarray::Array<Scalar const,1,1> const & nonlinear,
123  bool doApplyWeights=true
124  ) const = 0;
125 
126  virtual ~Likelihood() {}
127 
128  // No copying
129  Likelihood ( const Likelihood & ) = delete;
130  Likelihood & operator= ( const Likelihood & ) = delete;
131 
132  // No moving
133  Likelihood ( Likelihood && ) = delete;
134  Likelihood & operator= ( Likelihood && ) = delete;
135 
136 protected:
137 
138  Likelihood(PTR(Model) model, ndarray::Array<Scalar const,1,1> const & fixed) :
139  _model(model), _fixed(fixed) {
141  fixed.getSize<0>(), static_cast<std::size_t>(model->getFixedDim()),
143  "Fixed parameter vector size (%d) does not match Model fixed parameter dimensionality (%d)"
144  );
145  }
146 
148  ndarray::Array<Scalar const,1,1> _fixed;
149  ndarray::Array<Pixel,1,1> _data;
150  ndarray::Array<Pixel,1,1> _unweightedData;
151  ndarray::Array<Pixel,1,1> _variance;
152  ndarray::Array<Pixel,1,1> _weights;
153 };
154 
155 }}} // namespace lsst::meas::modelfit
156 
157 #endif // !LSST_MEAS_MODELFIT_Likelihood_h_INCLUDED
virtual void computeModelMatrix(ndarray::Array< Pixel, 2,-1 > const &modelMatrix, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, bool doApplyWeights=true) const =0
Evaluate the model for the given vector of nonlinear parameters.
ndarray::Array< Pixel const, 1, 1 > getWeights() const
Return the vector of weights applied to data points and model matrix rows.
Definition: Likelihood.h:99
ndarray::Array< Pixel, 1, 1 > _unweightedData
Definition: Likelihood.h:150
ndarray::Array< Pixel const, 1, 1 > getData() const
Return the vector of weighted, scaled data points .
Definition: Likelihood.h:89
Likelihood & operator=(const Likelihood &)=delete
#define LSST_THROW_IF_NE(N1, N2, EXC_CLASS, MSG)
Check whether the given values are equal, and throw an LSST Exception if they are not...
Definition: asserts.h:38
int getFixedDim() const
Return the number of fixed nonlinear parameters (set on Likelihood construction)
Definition: Likelihood.h:83
Reports attempts to exceed implementation-defined length limits for some classes. ...
Definition: Runtime.h:76
ndarray::Array< Pixel const, 1, 1 > getUnweightedData() const
Return the vector of unweighted data points .
Definition: Likelihood.h:92
Abstract base class and concrete factories that define multi-shapelet galaxy models.
Definition: Model.h:56
Likelihood(const Likelihood &)=delete
ndarray::Array< Scalar const, 1, 1 > getFixed() const
Return the vector of fixed nonlinear parameters.
Definition: Likelihood.h:86
A base class for image defects.
Likelihood(boost::shared_ptr< Model > model, ndarray::Array< Scalar const, 1, 1 > const &fixed)
Definition: Likelihood.h:138
ndarray::Array< Pixel, 1, 1 > _data
Definition: Likelihood.h:149
ndarray::Array< Pixel, 1, 1 > _weights
Definition: Likelihood.h:152
int getFixedDim() const
Return the number of fixed nonlinear parameters.
Definition: Model.h:130
Base class for optimizer/sampler likelihood functions that compute likelihood at a point...
Definition: Likelihood.h:69
ndarray::Array< Scalar const, 1, 1 > _fixed
Definition: Likelihood.h:148
int getNonlinearDim() const
Return the number of nonlinear parameters (which parameterize the model matrix)
Definition: Likelihood.h:80
boost::shared_ptr< Model > getModel() const
Return an object that defines the model and its parameters.
Definition: Likelihood.h:105
ndarray::Array< Pixel, 1, 1 > _variance
Definition: Likelihood.h:151
int getAmplitudeDim() const
Return the number of linear parameters (columns of the model matrix)
Definition: Likelihood.h:77
ndarray::Array< Pixel const, 1, 1 > getVariance() const
Return the vector of per-data-point variances.
Definition: Likelihood.h:102
#define PTR(...)
Definition: base.h:41
boost::shared_ptr< Model > _model
Definition: Likelihood.h:147
int getDataDim() const
Return the number of data points.
Definition: Likelihood.h:74