LSSTApplications  18.0.0+106,18.0.0+50,19.0.0,19.0.0+1,19.0.0+10,19.0.0+11,19.0.0+13,19.0.0+17,19.0.0+2,19.0.0-1-g20d9b18+6,19.0.0-1-g425ff20,19.0.0-1-g5549ca4,19.0.0-1-g580fafe+6,19.0.0-1-g6fe20d0+1,19.0.0-1-g7011481+9,19.0.0-1-g8c57eb9+6,19.0.0-1-gb5175dc+11,19.0.0-1-gdc0e4a7+9,19.0.0-1-ge272bc4+6,19.0.0-1-ge3aa853,19.0.0-10-g448f008b,19.0.0-12-g6990b2c,19.0.0-2-g0d9f9cd+11,19.0.0-2-g3d9e4fb2+11,19.0.0-2-g5037de4,19.0.0-2-gb96a1c4+3,19.0.0-2-gd955cfd+15,19.0.0-3-g2d13df8,19.0.0-3-g6f3c7dc,19.0.0-4-g725f80e+11,19.0.0-4-ga671dab3b+1,19.0.0-4-gad373c5+3,19.0.0-5-ga2acb9c+2,19.0.0-5-gfe96e6c+2,w.2020.01
LSSTDataManagementBasePackage
PolynomialFunction1d.cc
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 /*
3  * Developed for the LSST Data Management System.
4  * This product includes software developed by the LSST Project
5  * (https://www.lsst.org).
6  * See the COPYRIGHT file at the top-level directory of this distribution
7  * for details of code ownership.
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program. If not, see <https://www.gnu.org/licenses/>.
21  */
22 
23 #include <vector>
24 
28 
29 
30 namespace lsst { namespace geom { namespace polynomials {
31 
33  auto const & basis = f.getBasis();
34  std::vector<SafeSum<double>> sums(basis.size());
35  double const s = basis.getScaling().getScale();
36  double const v = basis.getScaling().getShift();
37  double sn = 1; // s^n
38  BinomialMatrix binomial(basis.getNested().getOrder());
39  for (std::size_t n = 0; n < basis.size(); ++n, sn *= s) {
40  double vk = 1; // v^k
41  for (std::size_t k = 0; k <= n; ++k, vk *= v) {
42  sums[n - k] += sn*binomial(n, k)*f[n]*vk;
43  }
44  }
45  Eigen::VectorXd result = Eigen::VectorXd::Zero(basis.size());
46  for (std::size_t n = 0; n < basis.size(); ++n) {
47  result[n] = static_cast<double>(sums[n]);
48  }
49  return makeFunction1d(basis.getNested(), result);
50 }
51 
52 }}} // namespace lsst::geom::polynomials
A 1-d function defined by a series expansion and its coefficients.
Definition: Function1d.h:42
PolynomialFunction1d simplified(ScaledPolynomialFunction1d const &f)
Calculate the standard polynomial function that is equivalent to a scaled standard polynomial functio...
A base class for image defects.
A class that computes binomial coefficients up to a certain power.
Basis const & getBasis() const
Return the associated Basis1d object.
Definition: Function1d.h:98
table::Key< table::Array< double > > basis
Definition: PsfexPsf.cc:361
Function1d< Basis > makeFunction1d(Basis const &basis, Eigen::VectorXd const &coefficients)
Create a Function1d of the appropriate type from a Basis1d and an Eigen object containing coefficient...
Definition: Function1d.h:144
STL class.
py::object result
Definition: _schema.cc:429