LSSTApplications  18.0.0+106,18.0.0+50,19.0.0,19.0.0+1,19.0.0+10,19.0.0+11,19.0.0+13,19.0.0+17,19.0.0+2,19.0.0-1-g20d9b18+6,19.0.0-1-g425ff20,19.0.0-1-g5549ca4,19.0.0-1-g580fafe+6,19.0.0-1-g6fe20d0+1,19.0.0-1-g7011481+9,19.0.0-1-g8c57eb9+6,19.0.0-1-gb5175dc+11,19.0.0-1-gdc0e4a7+9,19.0.0-1-ge272bc4+6,19.0.0-1-ge3aa853,19.0.0-10-g448f008b,19.0.0-12-g6990b2c,19.0.0-2-g0d9f9cd+11,19.0.0-2-g3d9e4fb2+11,19.0.0-2-g5037de4,19.0.0-2-gb96a1c4+3,19.0.0-2-gd955cfd+15,19.0.0-3-g2d13df8,19.0.0-3-g6f3c7dc,19.0.0-4-g725f80e+11,19.0.0-4-ga671dab3b+1,19.0.0-4-gad373c5+3,19.0.0-5-ga2acb9c+2,19.0.0-5-gfe96e6c+2,w.2020.01
LSSTDataManagementBasePackage
SeparableKernel.cc
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 
3 /*
4  * LSST Data Management System
5  * Copyright 2008, 2009, 2010 LSST Corporation.
6  *
7  * This product includes software developed by the
8  * LSST Project (http://www.lsst.org/).
9  *
10  * This program is free software: you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, either version 3 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the LSST License Statement and
21  * the GNU General Public License along with this program. If not,
22  * see <http://www.lsstcorp.org/LegalNotices/>.
23  */
24 #include <algorithm>
25 #include <iterator>
26 #include <sstream>
27 
28 #include "lsst/pex/exceptions.h"
29 #include "lsst/afw/math/Kernel.h"
32 
34 
35 namespace lsst {
36 namespace afw {
37 
38 template std::shared_ptr<math::SeparableKernel> table::io::PersistableFacade<
39  math::SeparableKernel>::dynamicCast(std::shared_ptr<table::io::Persistable> const&);
40 
41 namespace math {
42 
44  : Kernel(),
45  _kernelColFunctionPtr(),
46  _kernelRowFunctionPtr(),
47  _localColList(0),
48  _localRowList(0),
49  _kernelX(0),
50  _kernelY(0),
51  _kernelRowCache(0),
52  _kernelColCache(0) {
53  _setKernelXY();
54 }
55 
56 SeparableKernel::SeparableKernel(int width, int height, KernelFunction const& kernelColFunction,
57  KernelFunction const& kernelRowFunction,
58  Kernel::SpatialFunction const& spatialFunction)
59  : Kernel(width, height, kernelColFunction.getNParameters() + kernelRowFunction.getNParameters(),
60  spatialFunction),
61  _kernelColFunctionPtr(kernelColFunction.clone()),
62  _kernelRowFunctionPtr(kernelRowFunction.clone()),
63  _localColList(width),
64  _localRowList(height),
65  _kernelX(width),
66  _kernelY(height),
67  _kernelRowCache(0),
68  _kernelColCache(0) {
69  _setKernelXY();
70 }
71 
72 SeparableKernel::SeparableKernel(int width, int height, KernelFunction const& kernelColFunction,
73  KernelFunction const& kernelRowFunction,
74  std::vector<Kernel::SpatialFunctionPtr> const& spatialFunctionList)
75  : Kernel(width, height, spatialFunctionList),
76  _kernelColFunctionPtr(kernelColFunction.clone()),
77  _kernelRowFunctionPtr(kernelRowFunction.clone()),
78  _localColList(width),
79  _localRowList(height),
80  _kernelX(width),
81  _kernelY(height),
82  _kernelRowCache(0),
83  _kernelColCache(0) {
84  if (kernelColFunction.getNParameters() + kernelRowFunction.getNParameters() !=
85  spatialFunctionList.size()) {
87  os << "kernelColFunction.getNParameters() + kernelRowFunction.getNParameters() = "
88  << kernelColFunction.getNParameters() << " + " << kernelRowFunction.getNParameters()
89  << " != " << spatialFunctionList.size() << " = "
90  << "spatialFunctionList.size()";
92  }
93 
94  _setKernelXY();
95 }
96 
99  if (this->isSpatiallyVarying()) {
100  retPtr.reset(new SeparableKernel(this->getWidth(), this->getHeight(), *(this->_kernelColFunctionPtr),
101  *(this->_kernelRowFunctionPtr), this->_spatialFunctionList));
102  } else {
103  retPtr.reset(new SeparableKernel(this->getWidth(), this->getHeight(), *(this->_kernelColFunctionPtr),
104  *(this->_kernelRowFunctionPtr)));
105  }
106  retPtr->setCtr(this->getCtr());
107  retPtr->computeCache(this->getCacheSize());
108  return retPtr;
109 }
110 
111 std::shared_ptr<Kernel> SeparableKernel::resized(int width, int height) const {
113  if (isSpatiallyVarying()) {
114  retPtr = std::make_shared<SeparableKernel>(width, height, *_kernelColFunctionPtr,
115  *_kernelRowFunctionPtr, _spatialFunctionList);
116  } else {
117  retPtr = std::make_shared<SeparableKernel>(width, height, *_kernelColFunctionPtr,
118  *_kernelRowFunctionPtr);
119  }
120  return retPtr;
121 }
122 
124  bool doNormalize, double x, double y) const {
125  if (static_cast<int>(colList.size()) != this->getWidth() ||
126  static_cast<int>(rowList.size()) != this->getHeight()) {
128  os << "colList.size(), rowList.size() = (" << colList.size() << ", " << rowList.size() << ") != ("
129  << this->getWidth() << ", " << this->getHeight() << ") = "
130  << "kernel dimensions";
132  }
133  if (this->isSpatiallyVarying()) {
135  }
136 
137  return basicComputeVectors(colList, rowList, doNormalize);
138 }
139 
141  return _kernelColFunctionPtr->clone();
142 }
143 
145  return _kernelRowFunctionPtr->clone();
146 }
147 
150  os << prefix << "SeparableKernel:" << std::endl;
151  os << prefix
152  << "..x (width) function: " << (_kernelColFunctionPtr ? _kernelColFunctionPtr->toString() : "None")
153  << std::endl;
154  os << prefix
155  << "..y (rows) function: " << (_kernelRowFunctionPtr ? _kernelRowFunctionPtr->toString() : "None")
156  << std::endl;
157  os << Kernel::toString(prefix + "\t");
158  return os.str();
159 }
160 
162  std::vector<double> allParams = _kernelColFunctionPtr->getParameters();
163  std::vector<double> yParams = _kernelRowFunctionPtr->getParameters();
164  std::copy(yParams.begin(), yParams.end(), std::back_inserter(allParams));
165  return allParams;
166 }
167 
168 //
169 // Protected Member Functions
170 //
171 
173  double imSum = basicComputeVectors(_localColList, _localRowList, doNormalize);
174 
175  for (int y = 0; y != image.getHeight(); ++y) {
177  for (std::vector<Pixel>::iterator colIter = _localColList.begin(); colIter != _localColList.end();
178  ++colIter, ++imPtr) {
179  *imPtr = (*colIter) * _localRowList[y];
180  }
181  }
182 
183  return imSum;
184 }
185 
186 void SeparableKernel::setKernelParameter(unsigned int ind, double value) const {
187  unsigned int const nColParams = _kernelColFunctionPtr->getNParameters();
188  if (ind < nColParams) {
189  _kernelColFunctionPtr->setParameter(ind, value);
190  } else {
191  _kernelRowFunctionPtr->setParameter(ind - nColParams, value);
192  }
193 }
194 
195 //
196 // Private Member Functions
197 //
198 
199 double SeparableKernel::basicComputeVectors(std::vector<Pixel>& colList, std::vector<Pixel>& rowList,
200  bool doNormalize) const {
201  double colSum = 0.0;
202  if (_kernelColCache.empty()) {
203  for (unsigned int i = 0; i != colList.size(); ++i) {
204  double colFuncValue = (*_kernelColFunctionPtr)(_kernelX[i]);
205  colList[i] = colFuncValue;
206  colSum += colFuncValue;
207  }
208  } else {
209  int const cacheSize = _kernelColCache.size();
210 
211  int const indx = this->getKernelParameter(0) * cacheSize;
212 
213  std::vector<double>& cachedValues = _kernelColCache.at(indx);
214  for (unsigned int i = 0; i != colList.size(); ++i) {
215  double colFuncValue = cachedValues[i];
216  colList[i] = colFuncValue;
217  colSum += colFuncValue;
218  }
219  }
220 
221  double rowSum = 0.0;
222  if (_kernelRowCache.empty()) {
223  for (unsigned int i = 0; i != rowList.size(); ++i) {
224  double rowFuncValue = (*_kernelRowFunctionPtr)(_kernelY[i]);
225  rowList[i] = rowFuncValue;
226  rowSum += rowFuncValue;
227  }
228  } else {
229  int const cacheSize = _kernelRowCache.size();
230 
231  int const indx = this->getKernelParameter(1) * cacheSize;
232 
233  std::vector<double>& cachedValues = _kernelRowCache.at(indx);
234  for (unsigned int i = 0; i != rowList.size(); ++i) {
235  double rowFuncValue = cachedValues[i];
236  rowList[i] = rowFuncValue;
237  rowSum += rowFuncValue;
238 
239 #if 0
240  if (indx == cacheSize/2) {
241  if (::fabs(rowFuncValue - (*_kernelRowFunctionPtr)(_kernelX[i])) > 1e-2) {
242  std::cout << indx << " " << i << " "
243  << rowFuncValue << " "
244  << (*_kernelRowFunctionPtr)(_kernelX[i])
245  << std::endl;
246  }
247  }
248 #endif
249  }
250  }
251 
252  double imSum = colSum * rowSum;
253  if (doNormalize) {
254  if ((colSum == 0) || (rowSum == 0)) {
255  throw LSST_EXCEPT(pexExcept::OverflowError, "Cannot normalize; kernel sum is 0");
256  }
257  for (std::vector<Pixel>::iterator colIter = colList.begin(); colIter != colList.end(); ++colIter) {
258  *colIter /= colSum;
259  }
260 
261  for (std::vector<Pixel>::iterator rowIter = rowList.begin(); rowIter != rowList.end(); ++rowIter) {
262  *rowIter /= rowSum;
263  }
264  imSum = 1.0;
265  }
266  return imSum;
267 }
268 
269 namespace {
273 void _computeCache(int const cacheSize, std::vector<double> const& x,
275  if (cacheSize <= 0) {
276  kernelCache->erase(kernelCache->begin(), kernelCache->end());
277  return;
278  }
279 
280  if (kernelCache[0].size() != x.size()) { // invalid
281  kernelCache->erase(kernelCache->begin(), kernelCache->end());
282  }
283 
284  int const old_cacheSize = kernelCache->size();
285 
286  if (cacheSize == old_cacheSize) {
287  return; // nothing to do
288  }
289 
290  if (cacheSize < old_cacheSize) {
291  kernelCache->erase(kernelCache->begin() + cacheSize, kernelCache->end());
292  } else {
293  kernelCache->resize(cacheSize);
294  for (int i = old_cacheSize; i != cacheSize; ++i) {
295  (*kernelCache)[i].resize(x.size());
296  }
297  }
298  //
299  // Actually fill the cache
300  //
301  for (int i = 0; i != cacheSize; ++i) {
302  func->setParameter(0, (i + 0.5) / static_cast<double>(cacheSize));
303  for (unsigned int j = 0; j != x.size(); ++j) {
304  (*kernelCache)[i][j] = (*func)(x[j]);
305  }
306  }
307 }
308 } // namespace
309 
312 
313  func = getKernelColFunction();
314  _computeCache(cacheSize, _kernelY, func, &_kernelColCache);
315 
316  func = getKernelRowFunction();
317  _computeCache(cacheSize, _kernelX, func, &_kernelRowCache);
318 }
319 
320 int SeparableKernel::getCacheSize() const { return _kernelColCache.size(); };
321 } // namespace math
322 } // namespace afw
323 } // namespace lsst
int getHeight() const
Return the Kernel&#39;s height.
Definition: Kernel.h:230
unsigned int getNParameters() const noexcept
Return the number of function parameters.
Definition: Function.h:112
T empty(T... args)
T copy(T... args)
afw::table::Key< int > cacheSize
Definition: CoaddPsf.cc:339
std::vector< double > getKernelParameters() const override
Return the current kernel parameters.
int getHeight() const
Return the number of rows in the image.
Definition: ImageBase.h:335
std::shared_ptr< Kernel > resized(int width, int height) const override
Return a pointer to a clone with specified kernel dimensions.
T endl(T... args)
_view_t::x_iterator x_iterator
An iterator for traversing the pixels in a row.
Definition: ImageBase.h:133
void setKernelParameter(unsigned int ind, double value) const override
Set one kernel parameter.
int y
Definition: SpanSet.cc:49
double doComputeImage(lsst::afw::image::Image< Pixel > &image, bool doNormalize) const override
Low-level version of computeImage.
double getKernelParameter(unsigned int i) const override
Return a particular Kernel Parameter (no bounds checking).
Definition: Kernel.h:980
T end(T... args)
A Function taking two arguments.
Definition: Function.h:259
x_iterator row_begin(int y) const
Return an x_iterator to the start of the y&#39;th row.
Definition: ImageBase.h:438
STL class.
T at(T... args)
bool isSpatiallyVarying() const
Return true iff the kernel is spatially varying (has a spatial function)
Definition: Kernel.h:380
std::shared_ptr< Kernel > clone() const override
Return a pointer to a deep copy of this kernel.
double computeVectors(std::vector< Pixel > &colList, std::vector< Pixel > &rowList, bool doNormalize, double x=0.0, double y=0.0) const
Compute the column and row arrays in place, where kernel(col, row) = colList(col) * rowList(row) ...
A base class for image defects.
Reports when the result of an arithmetic operation is too large for the destination type...
Definition: Runtime.h:124
KernelFunctionPtr getKernelRowFunction() const
Get a deep copy of the row kernel function.
KernelFunctionPtr getKernelColFunction() const
Get a deep copy of the col kernel function.
A Function taking one argument.
Definition: Function.h:202
SeparableKernel()
Construct an empty spatially invariant SeparableKernel of size 0x0.
T str(T... args)
lsst::geom::Point2I getCtr() const
Return index of kernel&#39;s center.
Definition: Kernel.h:235
T reset(T... args)
int getCacheSize() const override
Get the current cache size (0 if none)
void computeCache(int const cacheSize) override
Compute a cache of Kernel values, if desired.
std::string toString(std::string const &prefix="") const override
Return a string representation of the kernel.
double x
void setKernelParametersFromSpatialModel(double x, double y) const
Set the kernel parameters from the spatial model (if any).
Definition: Kernel.cc:228
int getWidth() const
Return the Kernel&#39;s width.
Definition: Kernel.h:225
T size(T... args)
#define LSST_EXCEPT(type,...)
Create an exception with a given type.
Definition: Exception.h:48
STL class.
T begin(T... args)
T back_inserter(T... args)
std::vector< SpatialFunctionPtr > _spatialFunctionList
Definition: Kernel.h:496
Reports invalid arguments.
Definition: Runtime.h:66
std::string prefix
Definition: SchemaMapper.cc:79
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects...
std::ostream * os
Definition: Schema.cc:746
Kernels are used for convolution with MaskedImages and (eventually) Images.
Definition: Kernel.h:111
virtual std::string toString(std::string const &prefix="") const
Return a string representation of the kernel.
Definition: Kernel.cc:195