LSSTApplications  18.0.0+106,18.0.0+50,19.0.0,19.0.0+1,19.0.0+10,19.0.0+11,19.0.0+13,19.0.0+17,19.0.0+2,19.0.0-1-g20d9b18+6,19.0.0-1-g425ff20,19.0.0-1-g5549ca4,19.0.0-1-g580fafe+6,19.0.0-1-g6fe20d0+1,19.0.0-1-g7011481+9,19.0.0-1-g8c57eb9+6,19.0.0-1-gb5175dc+11,19.0.0-1-gdc0e4a7+9,19.0.0-1-ge272bc4+6,19.0.0-1-ge3aa853,19.0.0-10-g448f008b,19.0.0-12-g6990b2c,19.0.0-2-g0d9f9cd+11,19.0.0-2-g3d9e4fb2+11,19.0.0-2-g5037de4,19.0.0-2-gb96a1c4+3,19.0.0-2-gd955cfd+15,19.0.0-3-g2d13df8,19.0.0-3-g6f3c7dc,19.0.0-4-g725f80e+11,19.0.0-4-ga671dab3b+1,19.0.0-4-gad373c5+3,19.0.0-5-ga2acb9c+2,19.0.0-5-gfe96e6c+2,w.2020.01
LSSTDataManagementBasePackage
Transformer.cc
Go to the documentation of this file.
1 // -*- lsst-c++ -*-
2 
3 /*
4  * LSST Data Management System
5  * Copyright 2008, 2009, 2010 LSST Corporation.
6  *
7  * This product includes software developed by the
8  * LSST Project (http://www.lsst.org/).
9  *
10  * This program is free software: you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, either version 3 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the LSST License Statement and
21  * the GNU General Public License along with this program. If not,
22  * see <http://www.lsstcorp.org/LegalNotices/>.
23  */
25 
26 #include "Eigen/LU"
27 
28 namespace lsst {
29 namespace afw {
30 namespace geom {
31 namespace ellipses {
32 
35  apply(*r);
36  return r;
37 }
38 
40 
42  Eigen::Matrix2d m;
43  input._assignToQuadrupole(m(0, 0), m(1, 1), m(0, 1));
44  m(1, 0) = m(0, 1);
45  m = transform.getMatrix() * m * transform.getMatrix().transpose();
46  result._assignFromQuadrupole(m(0, 0), m(1, 1), m(0, 1));
47 }
48 
51  Eigen::Matrix2d m;
52  Jacobian rhs = input._dAssignToQuadrupole(m(0, 0), m(1, 1), m(0, 1));
53  m(1, 0) = m(0, 1);
54  m = transform.getMatrix() * m * transform.getMatrix().transpose();
55  Jacobian lhs = output->_dAssignFromQuadrupole(m(0, 0), m(1, 1), m(0, 1));
56  Jacobian mid = Jacobian::Zero();
58  mid(0, 1) = transform[lsst::geom::LinearTransform::XY] * transform[lsst::geom::LinearTransform::XY];
59  mid(0, 2) = 2 * transform[lsst::geom::LinearTransform::XY] * transform[lsst::geom::LinearTransform::XX];
60  mid(1, 0) = transform[lsst::geom::LinearTransform::YX] * transform[lsst::geom::LinearTransform::YX];
61  mid(1, 1) = transform[lsst::geom::LinearTransform::YY] * transform[lsst::geom::LinearTransform::YY];
62  mid(1, 2) = 2 * transform[lsst::geom::LinearTransform::YY] * transform[lsst::geom::LinearTransform::YX];
63  mid(2, 0) = transform[lsst::geom::LinearTransform::YX] * transform[lsst::geom::LinearTransform::XX];
64  mid(2, 1) = transform[lsst::geom::LinearTransform::YY] * transform[lsst::geom::LinearTransform::XY];
65  mid(2, 2) = transform[lsst::geom::LinearTransform::XX] * transform[lsst::geom::LinearTransform::YY] +
67  return lhs * mid * rhs;
68 }
69 
72  Eigen::Matrix2d m;
73  input._assignToQuadrupole(m(0, 0), m(1, 1), m(0, 1));
74  Eigen::Matrix<double, 3, 4> mid = Eigen::Matrix<double, 3, 4>::Zero();
75  m(1, 0) = m(0, 1);
92  m = transform.getMatrix() * m * transform.getMatrix().transpose();
93  Jacobian lhs = output->_dAssignFromQuadrupole(m(0, 0), m(1, 1), m(0, 1));
94  return lhs * mid;
95 }
96 
98  std::shared_ptr<Ellipse> r = std::make_shared<Ellipse>(
99  input.getCore().transform(transform.getLinear()).copy(), transform(input.getCenter()));
100  return r;
101 }
102 
104  input.setCenter(transform(input.getCenter()));
105  input.getCore().transform(transform.getLinear()).inPlace();
106 }
107 
109  DerivativeMatrix r = DerivativeMatrix::Zero();
110  r.block<2, 2>(3, 3) = transform.getLinear().getMatrix();
111  r.block<3, 3>(0, 0) = input.getCore().transform(transform.getLinear()).d();
112  return r;
113 }
114 
116  TransformDerivativeMatrix r = TransformDerivativeMatrix::Zero();
117  r.block<2, 6>(3, 0) = transform.dTransform(input.getCenter());
118  r.block<3, 4>(0, 0) = input.getCore().transform(transform.getLinear()).dTransform();
119  return r;
120 }
121 } // namespace ellipses
122 } // namespace geom
123 } // namespace afw
124 } // namespace lsst
Eigen::Matrix< double, 5, 5 > DerivativeMatrix
Matrix type for derivative with respect to input ellipse parameters.
Definition: Transformer.h:89
virtual Jacobian _dAssignToQuadrupole(double &ixx, double &iyy, double &ixy) const =0
BaseCore & input
input core to be transformed
Definition: Transformer.h:75
lsst::geom::LinearTransform const & transform
transform object
Definition: Transformer.h:76
std::shared_ptr< BaseCore > clone() const
Deep-copy the Core.
Definition: BaseCore.h:82
Eigen::Matrix3d DerivativeMatrix
Matrix type for derivative with respect to input ellipse parameters.
Definition: Transformer.h:52
TransformDerivativeMatrix dTransform() const
Return the derivative of transformed core with respect to transform parameters.
Definition: Transformer.cc:70
TransformDerivativeMatrix dTransform() const
Return the derivative of transform output ellipse with respect to transform parameters.
Definition: Transformer.cc:115
void inPlace()
Transform the ellipse core in-place.
Definition: Transformer.cc:39
A base class for image defects.
std::shared_ptr< Ellipse > copy() const
Return a new transformed ellipse.
Definition: Transformer.cc:97
void inPlace()
Transform the ellipse in-place.
Definition: Transformer.cc:103
Eigen::Matrix< double, 5, 6 > TransformDerivativeMatrix
Matrix type for derivative with respect to transform parameters.
Definition: Transformer.h:92
Eigen::Matrix3d Jacobian
Parameter Jacobian matrix type.
Definition: BaseCore.h:64
Transformer transform(lsst::geom::LinearTransform const &transform)
Definition: Transformer.h:116
Eigen::Matrix< double, 3, 4 > TransformDerivativeMatrix
Matrix type for derivative with respect to transform parameters.
Definition: Transformer.h:55
A base class for parametrizations of the "core" of an ellipse - the ellipticity and size...
Definition: BaseCore.h:55
int m
Definition: SpanSet.cc:49
std::shared_ptr< BaseCore > copy() const
Return a new transformed ellipse core.
Definition: Transformer.cc:33
virtual void _assignToQuadrupole(double &ixx, double &iyy, double &ixy) const =0
py::object result
Definition: _schema.cc:429
DerivativeMatrix d() const
Return the derivative of transformed core with respect to input core.
Definition: Transformer.cc:49
virtual void _assignFromQuadrupole(double ixx, double iyy, double ixy)=0
DerivativeMatrix d() const
Return the derivative of transform output ellipse with respect to input ellipse.
Definition: Transformer.cc:108