LSSTApplications  18.0.0+106,18.0.0+50,19.0.0,19.0.0+1,19.0.0+10,19.0.0+11,19.0.0+13,19.0.0+17,19.0.0+2,19.0.0-1-g20d9b18+6,19.0.0-1-g425ff20,19.0.0-1-g5549ca4,19.0.0-1-g580fafe+6,19.0.0-1-g6fe20d0+1,19.0.0-1-g7011481+9,19.0.0-1-g8c57eb9+6,19.0.0-1-gb5175dc+11,19.0.0-1-gdc0e4a7+9,19.0.0-1-ge272bc4+6,19.0.0-1-ge3aa853,19.0.0-10-g448f008b,19.0.0-12-g6990b2c,19.0.0-2-g0d9f9cd+11,19.0.0-2-g3d9e4fb2+11,19.0.0-2-g5037de4,19.0.0-2-gb96a1c4+3,19.0.0-2-gd955cfd+15,19.0.0-3-g2d13df8,19.0.0-3-g6f3c7dc,19.0.0-4-g725f80e+11,19.0.0-4-ga671dab3b+1,19.0.0-4-gad373c5+3,19.0.0-5-ga2acb9c+2,19.0.0-5-gfe96e6c+2,w.2020.01
LSSTDataManagementBasePackage
How to use algorithms to manipulate Images

All of these algorithms require the inclusion of lsst/afw/image/ImageAlgorithm.h, and are in namespace lsst::afw::image.

Apply a functor to each pixel in an Image

afw supports for_each_pixel as a way to process each pixel in an Image, in a similar way to the STL's for_each. The name doesn't follow the LSST C++ guidelines, but in this case I felt that conformity to the spirit of the STL was more important. There are variants of for_each_pixel corresponding to setting a pixel to a function, setting it to a function of an Image, and setting it to a function of its value and a second Image's pixel value. The selection of which of these operations is desired is done by requiring the functor to inherit from a class such as pixelOp0 or pixelOp1XY, each of which is a std::function with a virtual operator() added.

for_each_pixel(Image<LhsT> &lhs, pixelOp0<LhsT> const& func)

Set each pixel in lhs to the value of func.

for_each_pixel(Image<LhsT> &lhs, pixelOp1<LhsT> const& func)

Set each pixel in lhs to the value of func(lhs).

for_each_pixel(Image<LhsT> &lhs, pixelOp1XY<LhsT> const& func)

Set each pixel in lhs to the value of func(x, y, lhs).

for_each_pixel(Image<LhsT> &lhs, Image<RhsT> const& rhs, pixelOp1<RhsT> const& func)

Set each pixel in lhs to the value of func(lhs).

for_each_pixel(Image<LhsT> &lhs, Image<RhsT> const& rhs, pixelOp2<Lhs, RhsT> const& func)

Set each pixel in lhs to the value of func(lhs, rhs).

for_each_pixel(Image<LhsT> &lhs, Image<RhsT> const& rhs, pixelOp2XY<Lhs, RhsT> const& func)

Set each pixel in lhs to the value of func(x, y, lhs, rhs).

Example of using for_each_pixel

This code is in forEachPixel.cc.

Include needed header file, and define a namespace alias

template <typename T>
struct erase : public afwImage::pixelOp0<T> {
T operator()() const { return 0; }
};
Here's the simplest possible functor, simply setting each pixel to 0. Note that operator() is declared const, as we pass these functors by (const) reference. If this surprises you, take a look at Meyers, Effective STL, Item 38.

template <typename T>
struct setVal
: public afwImage::pixelOp0<T> { // don't call it fill as people like to say using namespace std
setVal(T val) : _val(val) {}
T operator()() const { return _val; }
private:
T _val;
};
This one's a bit more interesting. We save a value in the constructor, and use it to set each pixel. It's analogous to std::fill, but if I called it fill then following a using namespace std; the compiler would complain about ambiguity; it's simpler just to use a different name.

template <typename T>
struct addOne : public afwImage::pixelOp1<T> {
T operator()(T val) const { return val + 1; }
};
template <typename T1, typename T2>
struct divide : public afwImage::pixelOp2<T1, T2> {
T1 operator()(T1 lhs, T2 rhs) const { return lhs / rhs; }
};

Here are examples of pixelOp1 and pixelOp2.

template <typename T>
struct Gaussian : public afwImage::pixelOp1XY<T> {
Gaussian(float a, float xc, float yc, float alpha) : _a(a), _xc(xc), _yc(yc), _alpha(alpha) {}
T operator()(int x, int y, T val) const {
float const dx = x - _xc;
float const dy = y - _yc;
return val + _a * ::exp(-(dx * dx + dy * dy) / (2 * _alpha * _alpha));
}
private:
float _a, _xc, _yc, _alpha;
};
A functor designed to add a Gaussian to an image

using namespace std;
int main() {
afwImage::Image<int> img2(img1.getDimensions());
Declare a couple of Images to play with

// set img1 to 0 (actually, the constructor already did this)
lsst::afw::image::for_each_pixel(img1, erase<float>());
// Set img2 to 10
lsst::afw::image::for_each_pixel(img2, setVal<int>(10));
cout << img1(0, 0) << " " << img2(0, 0) << endl;
// Set img1 += 1
lsst::afw::image::for_each_pixel(img1, addOne<float>());
cout << img1(0, 0) << " " << img2(0, 0) << endl;
// Set img1 = img2 + 1
lsst::afw::image::for_each_pixel(img1, img2, addOne<int>());
cout << img1(0, 0) << " " << img2(0, 0) << endl;
// Set img1 = 10, img2 = 3 then img1 /= img2
lsst::afw::image::for_each_pixel(img1, setVal<float>(10));
lsst::afw::image::for_each_pixel(img2, setVal<int>(3));
lsst::afw::image::for_each_pixel(img1, img2, divide<float, int>());
cout << img1(0, 0) << " " << img2(0, 0) << endl;
Apply erase to each pixel in img1, setVal to each pixel in img2, set img1 = img2 + 1, and finally img1 /= img1

// Set img1 = 10 + Gaussian()
float const peak = 1000.0; // peak value
float const xc = 5.0; // center of Gaussian
float const yc = 3.0; //
float const alpha = 1.5; // "sigma" for Gaussian
lsst::afw::image::for_each_pixel(img1, setVal<float>(10));
lsst::afw::image::for_each_pixel(img1, Gaussian<float>(peak, xc, yc, alpha));
cout << img1(0, 0) << " " << img1(xc, yc) << endl;
Add a Gaussian to the image, centered at (xc, yc) and with central intensity 1000.

}