LSSTApplications  18.0.0+106,18.0.0+50,19.0.0,19.0.0+1,19.0.0+10,19.0.0+11,19.0.0+13,19.0.0+17,19.0.0+2,19.0.0-1-g20d9b18+6,19.0.0-1-g425ff20,19.0.0-1-g5549ca4,19.0.0-1-g580fafe+6,19.0.0-1-g6fe20d0+1,19.0.0-1-g7011481+9,19.0.0-1-g8c57eb9+6,19.0.0-1-gb5175dc+11,19.0.0-1-gdc0e4a7+9,19.0.0-1-ge272bc4+6,19.0.0-1-ge3aa853,19.0.0-10-g448f008b,19.0.0-12-g6990b2c,19.0.0-2-g0d9f9cd+11,19.0.0-2-g3d9e4fb2+11,19.0.0-2-g5037de4,19.0.0-2-gb96a1c4+3,19.0.0-2-gd955cfd+15,19.0.0-3-g2d13df8,19.0.0-3-g6f3c7dc,19.0.0-4-g725f80e+11,19.0.0-4-ga671dab3b+1,19.0.0-4-gad373c5+3,19.0.0-5-ga2acb9c+2,19.0.0-5-gfe96e6c+2,w.2020.01
LSSTDataManagementBasePackage
modelFitAdapters.py
Go to the documentation of this file.
1 #
2 # LSST Data Management System
3 # Copyright 2008-2013 LSST Corporation.
4 #
5 # This product includes software developed by the
6 # LSST Project (http://www.lsst.org/).
7 #
8 # This program is free software: you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation, either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the LSST License Statement and
19 # the GNU General Public License along with this program. If not,
20 # see <http://www.lsstcorp.org/LegalNotices/>.
21 #
22 
23 import numpy
24 from .densityPlot import mergeDefaults
25 from .. import modelfitLib
26 
27 __all__ = ("SamplingDataAdapter", "OptimizerTrackLayer", "OptimizerDataAdapter",)
28 
29 
31 
32  def __init__(self, record):
33  self.record = record
34  self.pdf = record.getPdf()
35  self.dimensions = list(record.getInterpreter().getParameterNames())
36 
37  def eval1d(self, dim, x):
38  i = self.dimensions.index(dim)
39  z = numpy.zeros(x.shape, dtype=float)
40  if i >= self.pdf.getDimension():
41  return None
42  projection = self.pdf.project(i)
43  projection.evaluate(x.reshape(x.shape + (1,)), z)
44  return z
45 
46  def eval2d(self, xDim, yDim, x, y):
47  i = self.dimensions.index(yDim)
48  j = self.dimensions.index(xDim)
49  z = numpy.zeros(x.size, dtype=float)
50  if i >= self.pdf.getDimension() or j >= self.pdf.getDimension():
51  return None
52  projection = self.pdf.project(j, i)
53  xy = numpy.zeros((x.size, 2), dtype=float)
54  xy[:, 0] = x.flatten()
55  xy[:, 1] = y.flatten()
56  projection.evaluate(xy, z)
57  return z.reshape(x.shape)
58 
59 
61 
62  def __init__(self, record):
63  ModelFitDataAdapter.__init__(self, record)
64  self.samples = record.getSamples().copy(deep=True)
65  self.values = self.samples["parameters"]
66  self.weights = self.samples["weight"]
67  self.setRangesFromQuantiles(0.001, 0.999)
68  assert self.values.shape[1] == len(self.dimensions)
69 
70  def setRangesFromQuantiles(self, lower, upper):
71  fractions = numpy.array([lower, upper], dtype=float)
72  ranges = self.record.getInterpreter().computeParameterQuantiles(self.record, fractions)
73  self.lower = {dim: ranges[i, 0] for i, dim in enumerate(self.dimensions)}
74  self.upper = {dim: ranges[i, 1] for i, dim in enumerate(self.dimensions)}
75 
76 
78 
79  defaults = dict(
80  accepted=dict(
81  marker='.', linestyle='-', color='c',
82  markevery=(1, 1), # (start, stride): don't put a marker on the first point
83  ),
84  rejected=dict(
85  marker='.', linestyle='-', color='k', alpha=0.5,
86  markevery=3, # marker at every third point, so we only mark the rejected points
87  ),
88  )
89 
90  def __init__(self, tag, accepted=None, rejected=None):
91  self.tag = tag
92  self.accepted = mergeDefaults(accepted, self.defaults['accepted'])
93  self.rejected = mergeDefaults(rejected, self.defaults['rejected'])
94 
95  def plotX(self, axes, data, dim):
96  pass
97 
98  def plotY(self, axes, data, dim):
99  pass
100 
101  def plotXY(self, axes, data, xDim, yDim):
102  i = data.dimensions.index(yDim)
103  j = data.dimensions.index(xDim)
104  artists = []
105  artists.extend(axes.plot(data.rejected[:, j], data.rejected[:, i], **self.rejected))
106  artists.extend(axes.plot(data.accepted[:, j], data.accepted[:, i], **self.accepted))
107  return artists
108 
109 
111 
112  def __init__(self, record):
113  ModelFitDataAdapter.__init__(self, record)
114  self.samples = record.getSamples().copy(deep=True)
115  self.parameters = self.samples["parameters"]
116  self.state = self.samples["state"]
117  # The first point is neither accepted nor rejected, so we test on rejected and !rejected so
118  # as to include the first point with the accepted points
119  mask = (self.state & modelfitLib.Optimizer.STATUS_STEP_REJECTED).astype(bool)
120  self.accepted = self.parameters[numpy.logical_not(mask)]
121  # For each rejected point, we have three path points: the rejected point, the last accepted point,
122  # and a NaN to tell matplotlib not to connect to the next one.
123  # Note that the defaults for OptimizerTrackLayer use markevery=3 to only put markers on
124  # the rejected points
125  rejected = []
126  current = self.parameters[0]
127  nans = numpy.array([numpy.nan] * self.parameters.shape[1], dtype=float)
128  for parameters, isRejected in zip(self.parameters, mask):
129  if isRejected:
130  rejected.extend([parameters, current, nans])
131  else:
132  current = parameters
133  self.rejected = numpy.array(rejected)
134  self.lower = {}
135  self.upper = {}
136  for i, dim in enumerate(self.dimensions):
137  projected = self.pdf[0].project(i)
138  mu = projected.getMu()
139  sigma = projected.getSigma()**0.5
140  self.lower[dim] = min(self.accepted[:, i].min(), mu - 3*sigma)
141  self.upper[dim] = max(self.accepted[:, i].max(), mu + 3*sigma)
142  # Now we setup some special points for a CrossPointsLayer
143  self.points = numpy.zeros((2, self.parameters.shape[1]), dtype=float)
144  record.getInterpreter().packParameters(
145  self.record['initial.nonlinear'], self.record['initial.amplitudes'],
146  self.points[0, :]
147  )
148  record.getInterpreter().packParameters(
149  self.record['fit.nonlinear'], self.record['fit.amplitudes'],
150  self.points[1, :]
151  )
int min
int max
daf::base::PropertyList * list
Definition: fits.cc:903