LSSTApplications  18.0.0+106,18.0.0+50,19.0.0,19.0.0+1,19.0.0+10,19.0.0+11,19.0.0+13,19.0.0+17,19.0.0+2,19.0.0-1-g20d9b18+6,19.0.0-1-g425ff20,19.0.0-1-g5549ca4,19.0.0-1-g580fafe+6,19.0.0-1-g6fe20d0+1,19.0.0-1-g7011481+9,19.0.0-1-g8c57eb9+6,19.0.0-1-gb5175dc+11,19.0.0-1-gdc0e4a7+9,19.0.0-1-ge272bc4+6,19.0.0-1-ge3aa853,19.0.0-10-g448f008b,19.0.0-12-g6990b2c,19.0.0-2-g0d9f9cd+11,19.0.0-2-g3d9e4fb2+11,19.0.0-2-g5037de4,19.0.0-2-gb96a1c4+3,19.0.0-2-gd955cfd+15,19.0.0-3-g2d13df8,19.0.0-3-g6f3c7dc,19.0.0-4-g725f80e+11,19.0.0-4-ga671dab3b+1,19.0.0-4-gad373c5+3,19.0.0-5-ga2acb9c+2,19.0.0-5-gfe96e6c+2,w.2020.01
LSSTDataManagementBasePackage
psfMatch.py
Go to the documentation of this file.
1 # This file is part of ip_diffim.
2 #
3 # Developed for the LSST Data Management System.
4 # This product includes software developed by the LSST Project
5 # (https://www.lsst.org).
6 # See the COPYRIGHT file at the top-level directory of this distribution
7 # for details of code ownership.
8 #
9 # This program is free software: you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation, either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <https://www.gnu.org/licenses/>.
21 
22 __all__ = ["DetectionConfig", "PsfMatchConfig", "PsfMatchConfigAL", "PsfMatchConfigDF", "PsfMatchTask"]
23 
24 import time
25 
26 import numpy as np
27 
28 import lsst.afw.image as afwImage
29 import lsst.pex.config as pexConfig
30 import lsst.afw.math as afwMath
31 import lsst.afw.display as afwDisplay
32 import lsst.log as log
33 import lsst.pipe.base as pipeBase
34 from lsst.meas.algorithms import SubtractBackgroundConfig
35 from . import utils as diutils
36 from . import diffimLib
37 
38 
39 class DetectionConfig(pexConfig.Config):
40  """Configuration for detecting sources on images for building a
41  PSF-matching kernel
42 
43  Configuration for turning detected lsst.afw.detection.FootPrints into an
44  acceptable (unmasked, high signal-to-noise, not too large or not too small)
45  list of `lsst.ip.diffim.KernelSources` that are used to build the
46  Psf-matching kernel"""
47 
48  detThreshold = pexConfig.Field(
49  dtype=float,
50  doc="Value of footprint detection threshold",
51  default=10.0,
52  check=lambda x: x >= 3.0
53  )
54  detThresholdType = pexConfig.ChoiceField(
55  dtype=str,
56  doc="Type of detection threshold",
57  default="pixel_stdev",
58  allowed={
59  "value": "Use counts as the detection threshold type",
60  "stdev": "Use standard deviation of image plane",
61  "variance": "Use variance of image plane",
62  "pixel_stdev": "Use stdev derived from variance plane"
63  }
64  )
65  detOnTemplate = pexConfig.Field(
66  dtype=bool,
67  doc="""If true run detection on the template (image to convolve);
68  if false run detection on the science image""",
69  default=True
70  )
71  badMaskPlanes = pexConfig.ListField(
72  dtype=str,
73  doc="""Mask planes that lead to an invalid detection.
74  Options: NO_DATA EDGE SAT BAD CR INTRP""",
75  default=("NO_DATA", "EDGE", "SAT")
76  )
77  fpNpixMin = pexConfig.Field(
78  dtype=int,
79  doc="Minimum number of pixels in an acceptable Footprint",
80  default=5,
81  check=lambda x: x >= 5
82  )
83  fpNpixMax = pexConfig.Field(
84  dtype=int,
85  doc="""Maximum number of pixels in an acceptable Footprint;
86  too big and the subsequent convolutions become unwieldy""",
87  default=500,
88  check=lambda x: x <= 500
89  )
90  fpGrowKernelScaling = pexConfig.Field(
91  dtype=float,
92  doc="""If config.scaleByFwhm, grow the footprint based on
93  the final kernelSize. Each footprint will be
94  2*fpGrowKernelScaling*kernelSize x
95  2*fpGrowKernelScaling*kernelSize. With the value
96  of 1.0, the remaining pixels in each KernelCandiate
97  after convolution by the basis functions will be
98  equal to the kernel size itself.""",
99  default=1.0,
100  check=lambda x: x >= 1.0
101  )
102  fpGrowPix = pexConfig.Field(
103  dtype=int,
104  doc="""Growing radius (in pixels) for each raw detection
105  footprint. The smaller the faster; however the
106  kernel sum does not converge if the stamp is too
107  small; and the kernel is not constrained at all if
108  the stamp is the size of the kernel. The grown stamp
109  is 2 * fpGrowPix pixels larger in each dimension.
110  This is overridden by fpGrowKernelScaling if scaleByFwhm""",
111  default=30,
112  check=lambda x: x >= 10
113  )
114  scaleByFwhm = pexConfig.Field(
115  dtype=bool,
116  doc="Scale fpGrowPix by input Fwhm?",
117  default=True,
118  )
119 
120 
121 class PsfMatchConfig(pexConfig.Config):
122  """Base configuration for Psf-matching
123 
124  The base configuration of the Psf-matching kernel, and of the warping, detection,
125  and background modeling subTasks."""
126 
127  warpingConfig = pexConfig.ConfigField("Config for warping exposures to a common alignment",
128  afwMath.warper.WarperConfig)
129  detectionConfig = pexConfig.ConfigField("Controlling the detection of sources for kernel building",
130  DetectionConfig)
131  afwBackgroundConfig = pexConfig.ConfigField("Controlling the Afw background fitting",
132  SubtractBackgroundConfig)
133 
134  useAfwBackground = pexConfig.Field(
135  dtype=bool,
136  doc="Use afw background subtraction instead of ip_diffim",
137  default=False,
138  )
139  fitForBackground = pexConfig.Field(
140  dtype=bool,
141  doc="Include terms (including kernel cross terms) for background in ip_diffim",
142  default=False,
143  )
144  kernelBasisSet = pexConfig.ChoiceField(
145  dtype=str,
146  doc="Type of basis set for PSF matching kernel.",
147  default="alard-lupton",
148  allowed={
149  "alard-lupton": """Alard-Lupton sum-of-gaussians basis set,
150  * The first term has no spatial variation
151  * The kernel sum is conserved
152  * You may want to turn off 'usePcaForSpatialKernel'""",
153  "delta-function": """Delta-function kernel basis set,
154  * You may enable the option useRegularization
155  * You should seriously consider usePcaForSpatialKernel, which will also
156  enable kernel sum conservation for the delta function kernels"""
157  }
158  )
159  kernelSize = pexConfig.Field(
160  dtype=int,
161  doc="""Number of rows/columns in the convolution kernel; should be odd-valued.
162  Modified by kernelSizeFwhmScaling if scaleByFwhm = true""",
163  default=21,
164  )
165  scaleByFwhm = pexConfig.Field(
166  dtype=bool,
167  doc="Scale kernelSize, alardGaussians by input Fwhm",
168  default=True,
169  )
170  kernelSizeFwhmScaling = pexConfig.Field(
171  dtype=float,
172  doc="Multiplier of the largest AL Gaussian basis sigma to get the kernel bbox (pixel) size.",
173  default=6.0,
174  check=lambda x: x >= 1.0
175  )
176  kernelSizeMin = pexConfig.Field(
177  dtype=int,
178  doc="Minimum kernel bbox (pixel) size.",
179  default=21,
180  )
181  kernelSizeMax = pexConfig.Field(
182  dtype=int,
183  doc="Maximum kernel bbox (pixel) size.",
184  default=35,
185  )
186  spatialModelType = pexConfig.ChoiceField(
187  dtype=str,
188  doc="Type of spatial functions for kernel and background",
189  default="chebyshev1",
190  allowed={
191  "chebyshev1": "Chebyshev polynomial of the first kind",
192  "polynomial": "Standard x,y polynomial",
193  }
194  )
195  spatialKernelOrder = pexConfig.Field(
196  dtype=int,
197  doc="Spatial order of convolution kernel variation",
198  default=2,
199  check=lambda x: x >= 0
200  )
201  spatialBgOrder = pexConfig.Field(
202  dtype=int,
203  doc="Spatial order of differential background variation",
204  default=1,
205  check=lambda x: x >= 0
206  )
207  sizeCellX = pexConfig.Field(
208  dtype=int,
209  doc="Size (rows) in pixels of each SpatialCell for spatial modeling",
210  default=128,
211  check=lambda x: x >= 32
212  )
213  sizeCellY = pexConfig.Field(
214  dtype=int,
215  doc="Size (columns) in pixels of each SpatialCell for spatial modeling",
216  default=128,
217  check=lambda x: x >= 32
218  )
219  nStarPerCell = pexConfig.Field(
220  dtype=int,
221  doc="Number of KernelCandidates in each SpatialCell to use in the spatial fitting",
222  default=3,
223  check=lambda x: x >= 1
224  )
225  maxSpatialIterations = pexConfig.Field(
226  dtype=int,
227  doc="Maximum number of iterations for rejecting bad KernelCandidates in spatial fitting",
228  default=3,
229  check=lambda x: x >= 1 and x <= 5
230  )
231  usePcaForSpatialKernel = pexConfig.Field(
232  dtype=bool,
233  doc="""Use Pca to reduce the dimensionality of the kernel basis sets.
234  This is particularly useful for delta-function kernels.
235  Functionally, after all Cells have their raw kernels determined, we run
236  a Pca on these Kernels, re-fit the Cells using the eigenKernels and then
237  fit those for spatial variation using the same technique as for Alard-Lupton kernels.
238  If this option is used, the first term will have no spatial variation and the
239  kernel sum will be conserved.""",
240  default=False,
241  )
242  subtractMeanForPca = pexConfig.Field(
243  dtype=bool,
244  doc="Subtract off the mean feature before doing the Pca",
245  default=True,
246  )
247  numPrincipalComponents = pexConfig.Field(
248  dtype=int,
249  doc="""Number of principal components to use for Pca basis, including the
250  mean kernel if requested.""",
251  default=5,
252  check=lambda x: x >= 3
253  )
254  singleKernelClipping = pexConfig.Field(
255  dtype=bool,
256  doc="Do sigma clipping on each raw kernel candidate",
257  default=True,
258  )
259  kernelSumClipping = pexConfig.Field(
260  dtype=bool,
261  doc="Do sigma clipping on the ensemble of kernel sums",
262  default=True,
263  )
264  spatialKernelClipping = pexConfig.Field(
265  dtype=bool,
266  doc="Do sigma clipping after building the spatial model",
267  default=True,
268  )
269  checkConditionNumber = pexConfig.Field(
270  dtype=bool,
271  doc="""Test for maximum condition number when inverting a kernel matrix.
272  Anything above maxConditionNumber is not used and the candidate is set as BAD.
273  Also used to truncate inverse matrix in estimateBiasedRisk. However,
274  if you are doing any deconvolution you will want to turn this off, or use
275  a large maxConditionNumber""",
276  default=False,
277  )
278  badMaskPlanes = pexConfig.ListField(
279  dtype=str,
280  doc="""Mask planes to ignore when calculating diffim statistics
281  Options: NO_DATA EDGE SAT BAD CR INTRP""",
282  default=("NO_DATA", "EDGE", "SAT")
283  )
284  candidateResidualMeanMax = pexConfig.Field(
285  dtype=float,
286  doc="""Rejects KernelCandidates yielding bad difference image quality.
287  Used by BuildSingleKernelVisitor, AssessSpatialKernelVisitor.
288  Represents average over pixels of (image/sqrt(variance)).""",
289  default=0.25,
290  check=lambda x: x >= 0.0
291  )
292  candidateResidualStdMax = pexConfig.Field(
293  dtype=float,
294  doc="""Rejects KernelCandidates yielding bad difference image quality.
295  Used by BuildSingleKernelVisitor, AssessSpatialKernelVisitor.
296  Represents stddev over pixels of (image/sqrt(variance)).""",
297  default=1.50,
298  check=lambda x: x >= 0.0
299  )
300  useCoreStats = pexConfig.Field(
301  dtype=bool,
302  doc="""Use the core of the footprint for the quality statistics, instead of the entire footprint.
303  WARNING: if there is deconvolution we probably will need to turn this off""",
304  default=False,
305  )
306  candidateCoreRadius = pexConfig.Field(
307  dtype=int,
308  doc="""Radius for calculation of stats in 'core' of KernelCandidate diffim.
309  Total number of pixels used will be (2*radius)**2.
310  This is used both for 'core' diffim quality as well as ranking of
311  KernelCandidates by their total flux in this core""",
312  default=3,
313  check=lambda x: x >= 1
314  )
315  maxKsumSigma = pexConfig.Field(
316  dtype=float,
317  doc="""Maximum allowed sigma for outliers from kernel sum distribution.
318  Used to reject variable objects from the kernel model""",
319  default=3.0,
320  check=lambda x: x >= 0.0
321  )
322  maxConditionNumber = pexConfig.Field(
323  dtype=float,
324  doc="Maximum condition number for a well conditioned matrix",
325  default=5.0e7,
326  check=lambda x: x >= 0.0
327  )
328  conditionNumberType = pexConfig.ChoiceField(
329  dtype=str,
330  doc="Use singular values (SVD) or eigen values (EIGENVALUE) to determine condition number",
331  default="EIGENVALUE",
332  allowed={
333  "SVD": "Use singular values",
334  "EIGENVALUE": "Use eigen values (faster)",
335  }
336  )
337  maxSpatialConditionNumber = pexConfig.Field(
338  dtype=float,
339  doc="Maximum condition number for a well conditioned spatial matrix",
340  default=1.0e10,
341  check=lambda x: x >= 0.0
342  )
343  iterateSingleKernel = pexConfig.Field(
344  dtype=bool,
345  doc="""Remake KernelCandidate using better variance estimate after first pass?
346  Primarily useful when convolving a single-depth image, otherwise not necessary.""",
347  default=False,
348  )
349  constantVarianceWeighting = pexConfig.Field(
350  dtype=bool,
351  doc="""Use constant variance weighting in single kernel fitting?
352  In some cases this is better for bright star residuals.""",
353  default=True,
354  )
355  calculateKernelUncertainty = pexConfig.Field(
356  dtype=bool,
357  doc="""Calculate kernel and background uncertainties for each kernel candidate?
358  This comes from the inverse of the covariance matrix.
359  Warning: regularization can cause problems for this step.""",
360  default=False,
361  )
362  useBicForKernelBasis = pexConfig.Field(
363  dtype=bool,
364  doc="""Use Bayesian Information Criterion to select the number of bases going into the kernel""",
365  default=False,
366  )
367 
368 
370  """The parameters specific to the "Alard-Lupton" (sum-of-Gaussian) Psf-matching basis"""
371 
372  def setDefaults(self):
373  PsfMatchConfig.setDefaults(self)
374  self.kernelBasisSet = "alard-lupton"
375  self.maxConditionNumber = 5.0e7
376 
377  alardNGauss = pexConfig.Field(
378  dtype=int,
379  doc="Number of base Gaussians in alard-lupton kernel basis function generation.",
380  default=3,
381  check=lambda x: x >= 1
382  )
383  alardDegGauss = pexConfig.ListField(
384  dtype=int,
385  doc="Polynomial order of spatial modification of base Gaussians. "
386  "List length must be `alardNGauss`.",
387  default=(4, 2, 2),
388  )
389  alardSigGauss = pexConfig.ListField(
390  dtype=float,
391  doc="Default sigma values in pixels of base Gaussians. "
392  "List length must be `alardNGauss`.",
393  default=(0.7, 1.5, 3.0),
394  )
395  alardGaussBeta = pexConfig.Field(
396  dtype=float,
397  doc="Used if `scaleByFwhm==True`, scaling multiplier of base "
398  "Gaussian sigmas for automated sigma determination",
399  default=2.0,
400  check=lambda x: x >= 0.0,
401  )
402  alardMinSig = pexConfig.Field(
403  dtype=float,
404  doc="Used if `scaleByFwhm==True`, minimum sigma (pixels) for base Gaussians",
405  default=0.7,
406  check=lambda x: x >= 0.25
407  )
408  alardDegGaussDeconv = pexConfig.Field(
409  dtype=int,
410  doc="Used if `scaleByFwhm==True`, degree of spatial modification of ALL base Gaussians "
411  "in AL basis during deconvolution",
412  default=3,
413  check=lambda x: x >= 1
414  )
415  alardMinSigDeconv = pexConfig.Field(
416  dtype=float,
417  doc="Used if `scaleByFwhm==True`, minimum sigma (pixels) for base Gaussians during deconvolution; "
418  "make smaller than `alardMinSig` as this is only indirectly used",
419  default=0.4,
420  check=lambda x: x >= 0.25
421  )
422  alardNGaussDeconv = pexConfig.Field(
423  dtype=int,
424  doc="Used if `scaleByFwhm==True`, number of base Gaussians in AL basis during deconvolution",
425  default=3,
426  check=lambda x: x >= 1
427  )
428 
429 
431  """The parameters specific to the delta-function (one basis per-pixel) Psf-matching basis"""
432 
433  def setDefaults(self):
434  PsfMatchConfig.setDefaults(self)
435  self.kernelBasisSet = "delta-function"
436  self.maxConditionNumber = 5.0e6
438  self.subtractMeanForPca = True
439  self.useBicForKernelBasis = False
440 
441  useRegularization = pexConfig.Field(
442  dtype=bool,
443  doc="Use regularization to smooth the delta function kernels",
444  default=True,
445  )
446  regularizationType = pexConfig.ChoiceField(
447  dtype=str,
448  doc="Type of regularization.",
449  default="centralDifference",
450  allowed={
451  "centralDifference": "Penalize second derivative using 2-D stencil of central finite difference",
452  "forwardDifference": "Penalize first, second, third derivatives using forward finite differeces"
453  }
454  )
455  centralRegularizationStencil = pexConfig.ChoiceField(
456  dtype=int,
457  doc="Type of stencil to approximate central derivative (for centralDifference only)",
458  default=9,
459  allowed={
460  5: "5-point stencil including only adjacent-in-x,y elements",
461  9: "9-point stencil including diagonal elements"
462  }
463  )
464  forwardRegularizationOrders = pexConfig.ListField(
465  dtype=int,
466  doc="Array showing which order derivatives to penalize (for forwardDifference only)",
467  default=(1, 2),
468  itemCheck=lambda x: (x > 0) and (x < 4)
469  )
470  regularizationBorderPenalty = pexConfig.Field(
471  dtype=float,
472  doc="Value of the penalty for kernel border pixels",
473  default=3.0,
474  check=lambda x: x >= 0.0
475  )
476  lambdaType = pexConfig.ChoiceField(
477  dtype=str,
478  doc="How to choose the value of the regularization strength",
479  default="absolute",
480  allowed={
481  "absolute": "Use lambdaValue as the value of regularization strength",
482  "relative": "Use lambdaValue as fraction of the default regularization strength (N.R. 18.5.8)",
483  "minimizeBiasedRisk": "Minimize biased risk estimate",
484  "minimizeUnbiasedRisk": "Minimize unbiased risk estimate",
485  }
486  )
487  lambdaValue = pexConfig.Field(
488  dtype=float,
489  doc="Value used for absolute determinations of regularization strength",
490  default=0.2,
491  )
492  lambdaScaling = pexConfig.Field(
493  dtype=float,
494  doc="Fraction of the default lambda strength (N.R. 18.5.8) to use. 1e-4 or 1e-5",
495  default=1e-4,
496  )
497  lambdaStepType = pexConfig.ChoiceField(
498  dtype=str,
499  doc="""If a scan through lambda is needed (minimizeBiasedRisk, minimizeUnbiasedRisk),
500  use log or linear steps""",
501  default="log",
502  allowed={
503  "log": "Step in log intervals; e.g. lambdaMin, lambdaMax, lambdaStep = -1.0, 2.0, 0.1",
504  "linear": "Step in linear intervals; e.g. lambdaMin, lambdaMax, lambdaStep = 0.1, 100, 0.1",
505  }
506  )
507  lambdaMin = pexConfig.Field(
508  dtype=float,
509  doc="""If scan through lambda needed (minimizeBiasedRisk, minimizeUnbiasedRisk),
510  start at this value. If lambdaStepType = log:linear, suggest -1:0.1""",
511  default=-1.0,
512  )
513  lambdaMax = pexConfig.Field(
514  dtype=float,
515  doc="""If scan through lambda needed (minimizeBiasedRisk, minimizeUnbiasedRisk),
516  stop at this value. If lambdaStepType = log:linear, suggest 2:100""",
517  default=2.0,
518  )
519  lambdaStep = pexConfig.Field(
520  dtype=float,
521  doc="""If scan through lambda needed (minimizeBiasedRisk, minimizeUnbiasedRisk),
522  step in these increments. If lambdaStepType = log:linear, suggest 0.1:0.1""",
523  default=0.1,
524  )
525 
526 
527 class PsfMatchTask(pipeBase.Task):
528  """Base class for Psf Matching; should not be called directly
529 
530  Notes
531  -----
532  PsfMatchTask is a base class that implements the core functionality for matching the
533  Psfs of two images using a spatially varying Psf-matching `lsst.afw.math.LinearCombinationKernel`.
534  The Task requires the user to provide an instance of an `lsst.afw.math.SpatialCellSet`,
535  filled with `lsst.ip.diffim.KernelCandidate` instances, and a list of `lsst.afw.math.Kernels`
536  of basis shapes that will be used for the decomposition. If requested, the Task
537  also performs background matching and returns the differential background model as an
538  `lsst.afw.math.Kernel.SpatialFunction`.
539 
540  Invoking the Task
541  -----------------
542 
543  As a base class, this Task is not directly invoked. However, ``run()`` methods that are
544  implemented on derived classes will make use of the core ``_solve()`` functionality,
545  which defines a sequence of `lsst.afw.math.CandidateVisitor` classes that iterate
546  through the KernelCandidates, first building up a per-candidate solution and then
547  building up a spatial model from the ensemble of candidates. Sigma clipping is
548  performed using the mean and standard deviation of all kernel sums (to reject
549  variable objects), on the per-candidate substamp diffim residuals
550  (to indicate a bad choice of kernel basis shapes for that particular object),
551  and on the substamp diffim residuals using the spatial kernel fit (to indicate a bad
552  choice of spatial kernel order, or poor constraints on the spatial model). The
553  ``_diagnostic()`` method logs information on the quality of the spatial fit, and also
554  modifies the Task metadata.
555 
556  .. list-table:: Quantities set in Metadata
557  :header-rows: 1
558 
559  * - Parameter
560  - Description
561  * - ``spatialConditionNum``
562  - Condition number of the spatial kernel fit
563  * - ``spatialKernelSum``
564  - Kernel sum (10^{-0.4 * ``Delta``; zeropoint}) of the spatial Psf-matching kernel
565  * - ``ALBasisNGauss``
566  - If using sum-of-Gaussian basis, the number of gaussians used
567  * - ``ALBasisDegGauss``
568  - If using sum-of-Gaussian basis, the deg of spatial variation of the Gaussians
569  * - ``ALBasisSigGauss``
570  - If using sum-of-Gaussian basis, the widths (sigma) of the Gaussians
571  * - ``ALKernelSize``
572  - If using sum-of-Gaussian basis, the kernel size
573  * - ``NFalsePositivesTotal``
574  - Total number of diaSources
575  * - ``NFalsePositivesRefAssociated``
576  - Number of diaSources that associate with the reference catalog
577  * - ``NFalsePositivesRefAssociated``
578  - Number of diaSources that associate with the source catalog
579  * - ``NFalsePositivesUnassociated``
580  - Number of diaSources that are orphans
581  * - ``metric_MEAN``
582  - Mean value of substamp diffim quality metrics across all KernelCandidates,
583  for both the per-candidate (LOCAL) and SPATIAL residuals
584  * - ``metric_MEDIAN``
585  - Median value of substamp diffim quality metrics across all KernelCandidates,
586  for both the per-candidate (LOCAL) and SPATIAL residuals
587  * - ``metric_STDEV``
588  - Standard deviation of substamp diffim quality metrics across all KernelCandidates,
589  for both the per-candidate (LOCAL) and SPATIAL residuals
590 
591  Debug variables
592  ---------------
593 
594  The `lsst.pipe.base.cmdLineTask.CmdLineTask` command line task interface supports a
595  flag -d/--debug to import @b debug.py from your PYTHONPATH. The relevant contents of debug.py
596  for this Task include:
597 
598  .. code-block:: py
599 
600  import sys
601  import lsstDebug
602  def DebugInfo(name):
603  di = lsstDebug.getInfo(name)
604  if name == "lsst.ip.diffim.psfMatch":
605  # enable debug output
606  di.display = True
607  # display mask transparency
608  di.maskTransparency = 80
609  # show all the candidates and residuals
610  di.displayCandidates = True
611  # show kernel basis functions
612  di.displayKernelBasis = False
613  # show kernel realized across the image
614  di.displayKernelMosaic = True
615  # show coefficients of spatial model
616  di.plotKernelSpatialModel = False
617  # show fixed and spatial coefficients and coefficient histograms
618  di.plotKernelCoefficients = True
619  # show the bad candidates (red) along with good (green)
620  di.showBadCandidates = True
621  return di
622  lsstDebug.Info = DebugInfo
623  lsstDebug.frame = 1
624 
625  Note that if you want additional logging info, you may add to your scripts:
626 
627  .. code-block:: py
628 
629  import lsst.log.utils as logUtils
630  logUtils.traceSetAt("ip.diffim", 4)
631  """
632  ConfigClass = PsfMatchConfig
633  _DefaultName = "psfMatch"
634 
635  def __init__(self, *args, **kwargs):
636  """Create the psf-matching Task
637 
638  Parameters
639  ----------
640  *args
641  Arguments to be passed to ``lsst.pipe.base.task.Task.__init__``
642  **kwargs
643  Keyword arguments to be passed to ``lsst.pipe.base.task.Task.__init__``
644 
645  Notes
646  -----
647  The initialization sets the Psf-matching kernel configuration using the value of
648  self.config.kernel.active. If the kernel is requested with regularization to moderate
649  the bias/variance tradeoff, currently only used when a delta function kernel basis
650  is provided, it creates a regularization matrix stored as member variable
651  self.hMat.
652  """
653  pipeBase.Task.__init__(self, *args, **kwargs)
654  self.kConfig = self.config.kernel.active
655 
656  if 'useRegularization' in self.kConfig:
657  self.useRegularization = self.kConfig.useRegularization
658  else:
659  self.useRegularization = False
660 
661  if self.useRegularization:
662  self.hMat = diffimLib.makeRegularizationMatrix(pexConfig.makePropertySet(self.kConfig))
663 
664  def _diagnostic(self, kernelCellSet, spatialSolution, spatialKernel, spatialBg):
665  """Provide logging diagnostics on quality of spatial kernel fit
666 
667  Parameters
668  ----------
669  kernelCellSet : `lsst.afw.math.SpatialCellSet`
670  Cellset that contains the KernelCandidates used in the fitting
671  spatialSolution : `lsst.ip.diffim.SpatialKernelSolution`
672  KernelSolution of best-fit
673  spatialKernel : `lsst.afw.math.LinearCombinationKernel`
674  Best-fit spatial Kernel model
675  spatialBg : `lsst.afw.math.Function2D`
676  Best-fit spatial background model
677  """
678  # What is the final kernel sum
679  kImage = afwImage.ImageD(spatialKernel.getDimensions())
680  kSum = spatialKernel.computeImage(kImage, False)
681  self.log.info("Final spatial kernel sum %.3f" % (kSum))
682 
683  # Look at how well conditioned the matrix is
684  conditionNum = spatialSolution.getConditionNumber(
685  getattr(diffimLib.KernelSolution, self.kConfig.conditionNumberType))
686  self.log.info("Spatial model condition number %.3e" % (conditionNum))
687 
688  if conditionNum < 0.0:
689  self.log.warn("Condition number is negative (%.3e)" % (conditionNum))
690  if conditionNum > self.kConfig.maxSpatialConditionNumber:
691  self.log.warn("Spatial solution exceeds max condition number (%.3e > %.3e)" % (
692  conditionNum, self.kConfig.maxSpatialConditionNumber))
693 
694  self.metadata.set("spatialConditionNum", conditionNum)
695  self.metadata.set("spatialKernelSum", kSum)
696 
697  # Look at how well the solution is constrained
698  nBasisKernels = spatialKernel.getNBasisKernels()
699  nKernelTerms = spatialKernel.getNSpatialParameters()
700  if nKernelTerms == 0: # order 0
701  nKernelTerms = 1
702 
703  # Not fit for
704  nBgTerms = spatialBg.getNParameters()
705  if nBgTerms == 1:
706  if spatialBg.getParameters()[0] == 0.0:
707  nBgTerms = 0
708 
709  nGood = 0
710  nBad = 0
711  nTot = 0
712  for cell in kernelCellSet.getCellList():
713  for cand in cell.begin(False): # False = include bad candidates
714  nTot += 1
715  if cand.getStatus() == afwMath.SpatialCellCandidate.GOOD:
716  nGood += 1
717  if cand.getStatus() == afwMath.SpatialCellCandidate.BAD:
718  nBad += 1
719 
720  self.log.info("Doing stats of kernel candidates used in the spatial fit.")
721 
722  # Counting statistics
723  if nBad > 2*nGood:
724  self.log.warn("Many more candidates rejected than accepted; %d total, %d rejected, %d used" % (
725  nTot, nBad, nGood))
726  else:
727  self.log.info("%d candidates total, %d rejected, %d used" % (nTot, nBad, nGood))
728 
729  # Some judgements on the quality of the spatial models
730  if nGood < nKernelTerms:
731  self.log.warn("Spatial kernel model underconstrained; %d candidates, %d terms, %d bases" % (
732  nGood, nKernelTerms, nBasisKernels))
733  self.log.warn("Consider lowering the spatial order")
734  elif nGood <= 2*nKernelTerms:
735  self.log.warn("Spatial kernel model poorly constrained; %d candidates, %d terms, %d bases" % (
736  nGood, nKernelTerms, nBasisKernels))
737  self.log.warn("Consider lowering the spatial order")
738  else:
739  self.log.info("Spatial kernel model well constrained; %d candidates, %d terms, %d bases" % (
740  nGood, nKernelTerms, nBasisKernels))
741 
742  if nGood < nBgTerms:
743  self.log.warn("Spatial background model underconstrained; %d candidates, %d terms" % (
744  nGood, nBgTerms))
745  self.log.warn("Consider lowering the spatial order")
746  elif nGood <= 2*nBgTerms:
747  self.log.warn("Spatial background model poorly constrained; %d candidates, %d terms" % (
748  nGood, nBgTerms))
749  self.log.warn("Consider lowering the spatial order")
750  else:
751  self.log.info("Spatial background model appears well constrained; %d candidates, %d terms" % (
752  nGood, nBgTerms))
753 
754  def _displayDebug(self, kernelCellSet, spatialKernel, spatialBackground):
755  """Provide visualization of the inputs and ouputs to the Psf-matching code
756 
757  Parameters
758  ----------
759  kernelCellSet : `lsst.afw.math.SpatialCellSet`
760  The SpatialCellSet used in determining the matching kernel and background
761  spatialKernel : `lsst.afw.math.LinearCombinationKernel`
762  Spatially varying Psf-matching kernel
763  spatialBackground : `lsst.afw.math.Function2D`
764  Spatially varying background-matching function
765  """
766  import lsstDebug
767  displayCandidates = lsstDebug.Info(__name__).displayCandidates
768  displayKernelBasis = lsstDebug.Info(__name__).displayKernelBasis
769  displayKernelMosaic = lsstDebug.Info(__name__).displayKernelMosaic
770  plotKernelSpatialModel = lsstDebug.Info(__name__).plotKernelSpatialModel
771  plotKernelCoefficients = lsstDebug.Info(__name__).plotKernelCoefficients
772  showBadCandidates = lsstDebug.Info(__name__).showBadCandidates
773  maskTransparency = lsstDebug.Info(__name__).maskTransparency
774  if not maskTransparency:
775  maskTransparency = 0
776  afwDisplay.setDefaultMaskTransparency(maskTransparency)
777 
778  if displayCandidates:
779  diutils.showKernelCandidates(kernelCellSet, kernel=spatialKernel, background=spatialBackground,
780  frame=lsstDebug.frame,
781  showBadCandidates=showBadCandidates)
782  lsstDebug.frame += 1
783  diutils.showKernelCandidates(kernelCellSet, kernel=spatialKernel, background=spatialBackground,
784  frame=lsstDebug.frame,
785  showBadCandidates=showBadCandidates,
786  kernels=True)
787  lsstDebug.frame += 1
788  diutils.showKernelCandidates(kernelCellSet, kernel=spatialKernel, background=spatialBackground,
789  frame=lsstDebug.frame,
790  showBadCandidates=showBadCandidates,
791  resids=True)
792  lsstDebug.frame += 1
793 
794  if displayKernelBasis:
795  diutils.showKernelBasis(spatialKernel, frame=lsstDebug.frame)
796  lsstDebug.frame += 1
797 
798  if displayKernelMosaic:
799  diutils.showKernelMosaic(kernelCellSet.getBBox(), spatialKernel, frame=lsstDebug.frame)
800  lsstDebug.frame += 1
801 
802  if plotKernelSpatialModel:
803  diutils.plotKernelSpatialModel(spatialKernel, kernelCellSet, showBadCandidates=showBadCandidates)
804 
805  if plotKernelCoefficients:
806  diutils.plotKernelCoefficients(spatialKernel, kernelCellSet)
807 
808  def _createPcaBasis(self, kernelCellSet, nStarPerCell, ps):
809  """Create Principal Component basis
810 
811  If a principal component analysis is requested, typically when using a delta function basis,
812  perform the PCA here and return a new basis list containing the new principal components.
813 
814  Parameters
815  ----------
816  kernelCellSet : `lsst.afw.math.SpatialCellSet`
817  a SpatialCellSet containing KernelCandidates, from which components are derived
818  nStarPerCell : `int`
819  the number of stars per cell to visit when doing the PCA
820  ps : `lsst.daf.base.PropertySet`
821  input property set controlling the single kernel visitor
822 
823  Returns
824  -------
825  nRejectedPca : `int`
826  number of KernelCandidates rejected during PCA loop
827  spatialBasisList : `list` of `lsst.afw.math.kernel.FixedKernel`
828  basis list containing the principal shapes as Kernels
829 
830  Raises
831  ------
832  RuntimeError
833  If the Eigenvalues sum to zero.
834  """
835  nComponents = self.kConfig.numPrincipalComponents
836  imagePca = diffimLib.KernelPcaD()
837  importStarVisitor = diffimLib.KernelPcaVisitorF(imagePca)
838  kernelCellSet.visitCandidates(importStarVisitor, nStarPerCell)
839  if self.kConfig.subtractMeanForPca:
840  importStarVisitor.subtractMean()
841  imagePca.analyze()
842 
843  eigenValues = imagePca.getEigenValues()
844  pcaBasisList = importStarVisitor.getEigenKernels()
845 
846  eSum = np.sum(eigenValues)
847  if eSum == 0.0:
848  raise RuntimeError("Eigenvalues sum to zero")
849  for j in range(len(eigenValues)):
850  log.log("TRACE5." + self.log.getName() + "._solve", log.DEBUG,
851  "Eigenvalue %d : %f (%f)", j, eigenValues[j], eigenValues[j]/eSum)
852 
853  nToUse = min(nComponents, len(eigenValues))
854  trimBasisList = []
855  for j in range(nToUse):
856  # Check for NaNs?
857  kimage = afwImage.ImageD(pcaBasisList[j].getDimensions())
858  pcaBasisList[j].computeImage(kimage, False)
859  if not (True in np.isnan(kimage.getArray())):
860  trimBasisList.append(pcaBasisList[j])
861 
862  # Put all the power in the first kernel, which will not vary spatially
863  spatialBasisList = diffimLib.renormalizeKernelList(trimBasisList)
864 
865  # New Kernel visitor for this new basis list (no regularization explicitly)
866  singlekvPca = diffimLib.BuildSingleKernelVisitorF(spatialBasisList, ps)
867  singlekvPca.setSkipBuilt(False)
868  kernelCellSet.visitCandidates(singlekvPca, nStarPerCell)
869  singlekvPca.setSkipBuilt(True)
870  nRejectedPca = singlekvPca.getNRejected()
871 
872  return nRejectedPca, spatialBasisList
873 
874  def _buildCellSet(self, *args):
875  """Fill a SpatialCellSet with KernelCandidates for the Psf-matching process;
876  override in derived classes"""
877  return
878 
879  @pipeBase.timeMethod
880  def _solve(self, kernelCellSet, basisList, returnOnExcept=False):
881  """Solve for the PSF matching kernel
882 
883  Parameters
884  ----------
885  kernelCellSet : `lsst.afw.math.SpatialCellSet`
886  a SpatialCellSet to use in determining the matching kernel
887  (typically as provided by _buildCellSet)
888  basisList : `list` of `lsst.afw.math.kernel.FixedKernel`
889  list of Kernels to be used in the decomposition of the spatially varying kernel
890  (typically as provided by makeKernelBasisList)
891  returnOnExcept : `bool`, optional
892  if True then return (None, None) if an error occurs, else raise the exception
893 
894  Returns
895  -------
896  psfMatchingKernel : `lsst.afw.math.LinearCombinationKernel`
897  Spatially varying Psf-matching kernel
898  backgroundModel : `lsst.afw.math.Function2D`
899  Spatially varying background-matching function
900 
901  Raises
902  ------
903  RuntimeError :
904  If unable to determine PSF matching kernel and ``returnOnExcept==False``.
905  """
906 
907  import lsstDebug
908  display = lsstDebug.Info(__name__).display
909 
910  maxSpatialIterations = self.kConfig.maxSpatialIterations
911  nStarPerCell = self.kConfig.nStarPerCell
912  usePcaForSpatialKernel = self.kConfig.usePcaForSpatialKernel
913 
914  # Visitor for the single kernel fit
915  ps = pexConfig.makePropertySet(self.kConfig)
916  if self.useRegularization:
917  singlekv = diffimLib.BuildSingleKernelVisitorF(basisList, ps, self.hMat)
918  else:
919  singlekv = diffimLib.BuildSingleKernelVisitorF(basisList, ps)
920 
921  # Visitor for the kernel sum rejection
922  ksv = diffimLib.KernelSumVisitorF(ps)
923 
924  # Main loop
925  t0 = time.time()
926  try:
927  totalIterations = 0
928  thisIteration = 0
929  while (thisIteration < maxSpatialIterations):
930 
931  # Make sure there are no uninitialized candidates as active occupants of Cell
932  nRejectedSkf = -1
933  while (nRejectedSkf != 0):
934  log.log("TRACE1." + self.log.getName() + "._solve", log.DEBUG,
935  "Building single kernels...")
936  kernelCellSet.visitCandidates(singlekv, nStarPerCell)
937  nRejectedSkf = singlekv.getNRejected()
938  log.log("TRACE1." + self.log.getName() + "._solve", log.DEBUG,
939  "Iteration %d, rejected %d candidates due to initial kernel fit",
940  thisIteration, nRejectedSkf)
941 
942  # Reject outliers in kernel sum
943  ksv.resetKernelSum()
944  ksv.setMode(diffimLib.KernelSumVisitorF.AGGREGATE)
945  kernelCellSet.visitCandidates(ksv, nStarPerCell)
946  ksv.processKsumDistribution()
947  ksv.setMode(diffimLib.KernelSumVisitorF.REJECT)
948  kernelCellSet.visitCandidates(ksv, nStarPerCell)
949 
950  nRejectedKsum = ksv.getNRejected()
951  log.log("TRACE1." + self.log.getName() + "._solve", log.DEBUG,
952  "Iteration %d, rejected %d candidates due to kernel sum",
953  thisIteration, nRejectedKsum)
954 
955  # Do we jump back to the top without incrementing thisIteration?
956  if nRejectedKsum > 0:
957  totalIterations += 1
958  continue
959 
960  # At this stage we can either apply the spatial fit to
961  # the kernels, or we run a PCA, use these as a *new*
962  # basis set with lower dimensionality, and then apply
963  # the spatial fit to these kernels
964 
965  if (usePcaForSpatialKernel):
966  log.log("TRACE0." + self.log.getName() + "._solve", log.DEBUG,
967  "Building Pca basis")
968 
969  nRejectedPca, spatialBasisList = self._createPcaBasis(kernelCellSet, nStarPerCell, ps)
970  log.log("TRACE1." + self.log.getName() + "._solve", log.DEBUG,
971  "Iteration %d, rejected %d candidates due to Pca kernel fit",
972  thisIteration, nRejectedPca)
973 
974  # We don't want to continue on (yet) with the
975  # spatial modeling, because we have bad objects
976  # contributing to the Pca basis. We basically
977  # need to restart from the beginning of this loop,
978  # since the cell-mates of those objects that were
979  # rejected need their original Kernels built by
980  # singleKernelFitter.
981 
982  # Don't count against thisIteration
983  if (nRejectedPca > 0):
984  totalIterations += 1
985  continue
986  else:
987  spatialBasisList = basisList
988 
989  # We have gotten on to the spatial modeling part
990  regionBBox = kernelCellSet.getBBox()
991  spatialkv = diffimLib.BuildSpatialKernelVisitorF(spatialBasisList, regionBBox, ps)
992  kernelCellSet.visitCandidates(spatialkv, nStarPerCell)
993  spatialkv.solveLinearEquation()
994  log.log("TRACE2." + self.log.getName() + "._solve", log.DEBUG,
995  "Spatial kernel built with %d candidates", spatialkv.getNCandidates())
996  spatialKernel, spatialBackground = spatialkv.getSolutionPair()
997 
998  # Check the quality of the spatial fit (look at residuals)
999  assesskv = diffimLib.AssessSpatialKernelVisitorF(spatialKernel, spatialBackground, ps)
1000  kernelCellSet.visitCandidates(assesskv, nStarPerCell)
1001  nRejectedSpatial = assesskv.getNRejected()
1002  nGoodSpatial = assesskv.getNGood()
1003  log.log("TRACE1." + self.log.getName() + "._solve", log.DEBUG,
1004  "Iteration %d, rejected %d candidates due to spatial kernel fit",
1005  thisIteration, nRejectedSpatial)
1006  log.log("TRACE1." + self.log.getName() + "._solve", log.DEBUG,
1007  "%d candidates used in fit", nGoodSpatial)
1008 
1009  # If only nGoodSpatial == 0, might be other candidates in the cells
1010  if nGoodSpatial == 0 and nRejectedSpatial == 0:
1011  raise RuntimeError("No kernel candidates for spatial fit")
1012 
1013  if nRejectedSpatial == 0:
1014  # Nothing rejected, finished with spatial fit
1015  break
1016 
1017  # Otherwise, iterate on...
1018  thisIteration += 1
1019 
1020  # Final fit if above did not converge
1021  if (nRejectedSpatial > 0) and (thisIteration == maxSpatialIterations):
1022  log.log("TRACE1." + self.log.getName() + "._solve", log.DEBUG, "Final spatial fit")
1023  if (usePcaForSpatialKernel):
1024  nRejectedPca, spatialBasisList = self._createPcaBasis(kernelCellSet, nStarPerCell, ps)
1025  regionBBox = kernelCellSet.getBBox()
1026  spatialkv = diffimLib.BuildSpatialKernelVisitorF(spatialBasisList, regionBBox, ps)
1027  kernelCellSet.visitCandidates(spatialkv, nStarPerCell)
1028  spatialkv.solveLinearEquation()
1029  log.log("TRACE2." + self.log.getName() + "._solve", log.DEBUG,
1030  "Spatial kernel built with %d candidates", spatialkv.getNCandidates())
1031  spatialKernel, spatialBackground = spatialkv.getSolutionPair()
1032 
1033  spatialSolution = spatialkv.getKernelSolution()
1034 
1035  except Exception as e:
1036  self.log.error("ERROR: Unable to calculate psf matching kernel")
1037 
1038  log.log("TRACE1." + self.log.getName() + "._solve", log.DEBUG, str(e))
1039  raise e
1040 
1041  t1 = time.time()
1042  log.log("TRACE0." + self.log.getName() + "._solve", log.DEBUG,
1043  "Total time to compute the spatial kernel : %.2f s", (t1 - t0))
1044 
1045  if display:
1046  self._displayDebug(kernelCellSet, spatialKernel, spatialBackground)
1047 
1048  self._diagnostic(kernelCellSet, spatialSolution, spatialKernel, spatialBackground)
1049 
1050  return spatialSolution, spatialKernel, spatialBackground
1051 
1052 
1053 PsfMatch = PsfMatchTask
def _diagnostic(self, kernelCellSet, spatialSolution, spatialKernel, spatialBg)
Definition: psfMatch.py:664
def __init__(self, args, kwargs)
Definition: psfMatch.py:635
Fit spatial kernel using approximate fluxes for candidates, and solving a linear system of equations...
daf::base::PropertySet * set
Definition: fits.cc:902
int min
Definition: Log.h:706
def _createPcaBasis(self, kernelCellSet, nStarPerCell, ps)
Definition: psfMatch.py:808
def _displayDebug(self, kernelCellSet, spatialKernel, spatialBackground)
Definition: psfMatch.py:754
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects...