| LSSTApplications
    20.0.0
    LSSTDataManagementBasePackage | 
 
 
 
Go to the documentation of this file.
   28 #include <boost/math/tools/minima.hpp> 
   63     size_t nval = chi2List.
size();
 
   64     if (nval == 0) 
return 0;
 
   66     double median = (nval & 1) ? chi2List[nval / 2].chi2
 
   67                                : 0.5 * (chi2List[nval / 2 - 1].chi2 + chi2List[nval / 2].chi2);
 
   69     LOGLS_DEBUG(
_log, 
"findOutliers chi2 stat: mean/median/sigma " << averageAndSigma.first << 
'/' << median
 
   70                                                                    << 
'/' << averageAndSigma.second);
 
   71     double cut = averageAndSigma.first + nSigmaCut * averageAndSigma.second;
 
   77     Eigen::VectorXi affectedParams(
_nParTot);
 
   78     affectedParams.setZero();
 
   82     for (
auto chi2 = chi2List.
rbegin(); chi2 != chi2List.
rend(); ++chi2) {
 
   83         if (chi2->chi2 < cut) 
break;  
 
   88         auto measuredStar = std::dynamic_pointer_cast<MeasuredStar>(chi2->star);
 
   90         if (measuredStar == 
nullptr) {
 
   92             fittedStar = std::dynamic_pointer_cast<FittedStar>(chi2->star);
 
   93             if (fittedStar->getMeasurementCount() == 0) {
 
   94                 LOGLS_WARN(
_log, 
"FittedStar with no measuredStars found as an outlier: " << *fittedStar);
 
   99             indices.
push_back(fittedStar->getIndexInMatrix());
 
  100             LOGLS_TRACE(
_log, 
"Removing refStar " << *(fittedStar->getRefStar()) << 
" chi2: " << chi2->chi2);
 
  105             auto tempFittedStar = measuredStar->getFittedStar();
 
  106             if (tempFittedStar->getMeasurementCount() == 1 && tempFittedStar->getRefStar() == 
nullptr) {
 
  107                 LOGLS_WARN(
_log, 
"FittedStar with 1 measuredStar and no refStar found as an outlier: " 
  112             LOGLS_TRACE(
_log, 
"Removing measStar " << *measuredStar << 
" chi2: " << chi2->chi2);
 
  120         for (
auto const &i : indices) {
 
  121             if (affectedParams(i) != 0) {
 
  128             if (measuredStar == 
nullptr) {
 
  136             for (
auto const &i : indices) {
 
  142     LOGLS_INFO(
_log, 
"findOutliers: found " << msOutliers.
size() << 
" meas outliers and " << fsOutliers.
size()
 
  143                                             << 
" ref outliers ");
 
  152     jacobian.setFromTriplets(tripletList.
begin(), tripletList.
end());
 
  153     return jacobian * jacobian.transpose();
 
  157 void dumpMatrixAndGradient(
SparseMatrixD const &matrix, Eigen::VectorXd 
const &grad,
 
  160     Eigen::MatrixXd matrixDense(matrix);
 
  161     std::string dumpMatrixPath = dumpFile + 
"-mat" + ext;
 
  164     std::string dumpGradPath = dumpFile + 
"-grad" + ext;
 
  167     LOGLS_INFO(_log, 
"Dumped Hessian, gradient to: '" << dumpMatrixPath << 
"', '" << dumpGradPath << 
"'");
 
  172                                     bool const doLineSearch, 
std::string const &dumpMatrixFile) {
 
  194                               << hessian.rows() << 
" non-zeros=" << hessian.nonZeros()
 
  195                               << 
" filling-frac = " << hessian.nonZeros() / 
std::pow(hessian.rows(), 2));
 
  197     if (dumpMatrixFile != 
"") {
 
  198         if (hessian.rows() * hessian.cols() > 2e8) {
 
  199             LOGLS_WARN(
_log, 
"Hessian matrix is too big to dump to file, with rows, columns: " 
  200                                      << hessian.rows() << 
", " << hessian.cols());
 
  202             dumpMatrixAndGradient(hessian, grad, dumpMatrixFile, 
_log);
 
  207     if (chol.info() != Eigen::Success) {
 
  217         Eigen::VectorXd delta = chol.solve(grad);
 
  219             scale = _lineSearch(delta);
 
  225             LOGL_ERROR(
_log, 
"chi2 is not finite. Aborting outlier rejection.");
 
  229         if (currentChi2.
chi2 > oldChi2 && totalMeasOutliers + totalRefOutliers != 0) {
 
  230             LOGL_WARN(
_log, 
"chi2 went up, skipping outlier rejection loop");
 
  234         oldChi2 = currentChi2.
chi2;
 
  236         if (nSigmaCut == 0) 
break;  
 
  241         totalMeasOutliers += msOutliers.
size();
 
  242         totalRefOutliers += fsOutliers.
size();
 
  243         if (nOutliers == 0) 
break;
 
  254             H.setFromTriplets(outlierTriplets.
begin(), outlierTriplets.
end());
 
  268             hessian = createHessian(
_nParTot, nextTripletList);
 
  269             nextTripletList.
clear();  
 
  272                         "Restarting factorization, hessian: dim=" 
  273                                 << hessian.rows() << 
" non-zeros=" << hessian.nonZeros()
 
  274                                 << 
" filling-frac = " << hessian.nonZeros() / 
std::pow(hessian.rows(), 2));
 
  275             chol.compute(hessian);
 
  276             if (chol.info() != Eigen::Success) {
 
  284     if (nSigmaCut != 0) {
 
  285         LOGLS_INFO(
_log, 
"Number of outliers (Measured + Reference = Total): " 
  286                                  << totalMeasOutliers << 
" + " << totalRefOutliers << 
" = " 
  287                                  << totalMeasOutliers + totalRefOutliers);
 
  294     for (
auto &outlier : msOutliers) {
 
  297         const CcdImage &ccdImage = outlier->getCcdImage();
 
  304     for (
auto &measuredStar : outliers) {
 
  305         auto fittedStar = measuredStar->getFittedStar();
 
  306         measuredStar->setValid(
false);
 
  307         fittedStar->getMeasurementCount()--;  
 
  312     for (
auto &fittedStar : outliers) {
 
  313         fittedStar->setRefStar(
nullptr);
 
  319     for (
auto const &ccdImage : ccdImageList) {
 
  327     auto pos = baseName.
find(replaceStr);
 
  329     measFilename.
replace(pos, replaceStr.
size(), 
"-meas.csv");
 
  331     refFilename.
replace(pos, replaceStr.
size(), 
"-ref.csv");
 
  336 double FitterBase::_lineSearch(Eigen::VectorXd 
const &delta) {
 
  337     auto func = [
this, &delta](
double scale) {
 
  338         auto offset = 
scale * delta;
 
  347     auto result = boost::math::tools::brent_find_minima(func, -1.0, 2.0, bits);
 
  
virtual void saveChi2Contributions(std::string const &baseName) const
Save the full chi2 term per star that was used in the minimization, for debugging.
virtual void leastSquareDerivativesReference(FittedStarList const &fittedStarList, TripletList &tripletList, Eigen::VectorXd &grad) const =0
Compute the derivatives of the reference terms.
Structure to accumulate the chi2 contributions per each star (to help find outliers).
virtual void leastSquareDerivativesMeasurement(CcdImage const &ccdImage, TripletList &tripletList, Eigen::VectorXd &grad, MeasuredStarList const *measuredStarList=nullptr) const =0
Compute the derivatives of the measured stars and model for one CcdImage.
#define LOGL_WARN(logger, message...)
virtual void accumulateStatImageList(CcdImageList const &ccdImageList, Chi2Accumulator &accum) const =0
Compute the chi2 (per star or total, depending on which Chi2Accumulator is used) for measurements.
MinimizeResult minimize(std::string const &whatToFit, double const nSigmaCut=0, bool const doRankUpdate=true, bool const doLineSearch=false, std::string const &dumpMatrixFile="")
Does a 1 step minimization, assuming a linear model.
#define LOGLS_INFO(logger, message)
#define LOGLS_ERROR(logger, message)
#define LOGLS_TRACE(logger, message)
virtual void accumulateStatRefStars(Chi2Accumulator &accum) const =0
Compute the chi2 (per star or total, depending on which Chi2Accumulator is used) for RefStars.
#define LOGLS_WARN(logger, message)
Simple structure to accumulate chi2 and ndof.
#define LOGL_ERROR(logger, message...)
std::size_t findOutliers(double nSigmaCut, MeasuredStarList &msOutliers, FittedStarList &fsOutliers) const
Find Measurements and references contributing more than a cut, computed as.
std::shared_ptr< Associations > _associations
void leastSquareDerivatives(TripletList &tripletList, Eigen::VectorXd &grad) const
Evaluates the chI^2 derivatives (Jacobian and gradient) for the current whatToFit setting.
Handler of an actual image from a single CCD.
virtual void getIndicesOfMeasuredStar(MeasuredStar const &measuredStar, IndexVector &indices) const =0
Set the indices of a measured star from the full matrix, for outlier removal.
MinimizeResult
Return value of minimize()
A list of MeasuredStar. They are usually filled in Associations::createCcdImage.
Eigen::Index getNextFreeIndex() const
A base class for image defects.
virtual void saveChi2MeasContributions(std::string const &filename) const =0
Save a CSV file containing residuals of measurement terms.
#define LOGLS_DEBUG(logger, message)
void outliersContributions(MeasuredStarList &msOutliers, FittedStarList &fsOutliers, TripletList &tripletList, Eigen::VectorXd &grad)
Contributions to derivatives from (presumably) outlier terms.
Chi2Statistic computeChi2() const
Returns the chi2 for the current state.
virtual void assignIndices(std::string const &whatToFit)=0
Set parameters to fit and assign indices in the big matrix.
void removeMeasOutliers(MeasuredStarList &outliers)
Remove measuredStar outliers from the fit. No Refit done.
Eigen::SparseMatrix< double, 0, Eigen::Index > SparseMatrixD
virtual void offsetParams(Eigen::VectorXd const &delta)=0
Offset the parameters by the requested quantities.
def scale(algorithm, min, max=None, frame=None)
std::pair< double, double > computeAverageAndSigma()
Compute the average and std-deviation of these chisq values.
A list of FittedStar s. Such a list is typically constructed by Associations.
void update(SparseMatrixD const &H, bool UpOrDown)
void removeRefOutliers(FittedStarList &outliers)
Remove refStar outliers from the fit. No Refit done.
LSST DM logging module built on log4cxx.
Eigen::Index _nMeasuredStars
virtual void saveChi2RefContributions(std::string const &filename) const =0
Save a CSV file containing residuals of reference terms.