22 """Module defining a butler like object specialized to a specific quantum. 
   25 __all__ = (
"ButlerQuantumContext",)
 
   30 from .connections 
import InputQuantizedConnection, OutputQuantizedConnection, DeferredDatasetRef
 
   31 from .struct 
import Struct
 
   32 from lsst.daf.butler 
import DatasetRef, Butler, Quantum
 
   36     """Butler like class specialized for a single quantum 
   38     A ButlerQuantumContext class wraps a standard butler interface and 
   39     specializes it to the context of a given quantum. What this means 
   40     in practice is that the only gets and puts that this class allows 
   41     are DatasetRefs that are contained in the quantum. 
   43     In the future this class will also be used to record provenance on 
   44     what was actually get and put. This is in contrast to what the 
   45     preflight expects to be get and put by looking at the graph before 
   50     butler : `lsst.daf.butler.Butler` 
   51         Butler object from/to which datasets will be get/put 
   52     quantum : `lsst.daf.butler.core.Quantum` 
   53         Quantum object that describes the datasets which will 
   54         be get/put by a single execution of this node in the 
   57     def __init__(self, butler: Butler, quantum: Quantum):
 
   62         for refs 
in quantum.predictedInputs.values():
 
   64                 self.
allInputs.add((ref.datasetType, ref.dataId))
 
   65         for refs 
in quantum.outputs.values():
 
   67                 self.
allOutputs.add((ref.datasetType, ref.dataId))
 
   72             if isinstance(ref, DeferredDatasetRef):
 
   74                 return butler.getDeferred(ref.datasetRef)
 
   78                 return butler.get(ref)
 
   80         def _put(self, value, ref):
 
   82             butler.put(value, ref)
 
   84         self.
_get = types.MethodType(_get, self)
 
   85         self.
_put = types.MethodType(_put, self)
 
   87     def get(self, dataset: typing.Union[InputQuantizedConnection,
 
   88                                         typing.List[DatasetRef],
 
   89                                         DatasetRef]) -> object:
 
   90         """Fetches data from the butler 
   95             This argument may either be an `InputQuantizedConnection` which describes 
   96             all the inputs of a quantum, a list of `~lsst.daf.butler.DatasetRef`, or 
   97             a single `~lsst.daf.butler.DatasetRef`. The function will get and return 
   98             the corresponding datasets from the butler. 
  103             This function returns arbitrary objects fetched from the bulter. The 
  104             structure these objects are returned in depends on the type of the input 
  105             argument. If the input dataset argument is a InputQuantizedConnection, then 
  106             the return type will be a dictionary with keys corresponding to the attributes 
  107             of the `InputQuantizedConnection` (which in turn are the attribute identifiers 
  108             of the connections). If the input argument is of type `list` of 
  109             `~lsst.daf.butler.DatasetRef` then the return type  will be a list of objects. 
  110             If the input argument is a single `~lsst.daf.butler.DatasetRef` then a single 
  111             object will be returned. 
  116             If a `DatasetRef` is passed to get that is not defined in the quantum object 
  118         if isinstance(dataset, InputQuantizedConnection):
 
  120             for name, ref 
in dataset:
 
  121                 if isinstance(ref, list):
 
  122                     val = [self.
_get(r) 
for r 
in ref]
 
  127         elif isinstance(dataset, list):
 
  128             return [self.
_get(x) 
for x 
in dataset]
 
  129         elif isinstance(dataset, DatasetRef) 
or isinstance(dataset, DeferredDatasetRef):
 
  130             return self.
_get(dataset)
 
  132             raise TypeError(
"Dataset argument is not a type that can be used to get")
 
  134     def put(self, values: typing.Union[Struct, typing.List[typing.Any], object],
 
  135             dataset: typing.Union[OutputQuantizedConnection, typing.List[DatasetRef], DatasetRef]):
 
  136         """Puts data into the butler 
  140         values : `Struct` or `list` of `object` or `object` 
  141             The data that should be put with the butler. If the type of the dataset 
  142             is `OutputQuantizedConnection` then this argument should be a `Struct` 
  143             with corresponding attribute names. Each attribute should then correspond 
  144             to either a list of object or a single object depending of the type of the 
  145             corresponding attribute on dataset. I.e. if dataset.calexp is [datasetRef1, 
  146             datasetRef2] then values.calexp should be [calexp1, calexp2]. Like wise 
  147             if there is a single ref, then only a single object need be passed. The same 
  148             restriction applies if dataset is directly a `list` of `DatasetRef` or a 
  151             This argument may either be an `InputQuantizedConnection` which describes 
  152             all the inputs of a quantum, a list of `lsst.daf.butler.DatasetRef`, or 
  153             a single `lsst.daf.butler.DatasetRef`. The function will get and return 
  154             the corresponding datasets from the butler. 
  159             If a `DatasetRef` is passed to put that is not defined in the quantum object, or 
  160             the type of values does not match what is expected from the type of dataset. 
  162         if isinstance(dataset, OutputQuantizedConnection):
 
  163             if not isinstance(values, Struct):
 
  164                 raise ValueError(
"dataset is a OutputQuantizedConnection, a Struct with corresponding" 
  165                                  " attributes must be passed as the values to put")
 
  166             for name, refs 
in dataset:
 
  167                 valuesAttribute = getattr(values, name)
 
  168                 if isinstance(refs, list):
 
  169                     if len(refs) != len(valuesAttribute):
 
  170                         raise ValueError(f
"There must be a object to put for every Dataset ref in {name}")
 
  171                     for i, ref 
in enumerate(refs):
 
  172                         self.
_put(valuesAttribute[i], ref)
 
  174                     self.
_put(valuesAttribute, refs)
 
  175         elif isinstance(dataset, list):
 
  176             if len(dataset) != len(values):
 
  177                 raise ValueError(
"There must be a common number of references and values to put")
 
  178             for i, ref 
in enumerate(dataset):
 
  179                 self.
_put(values[i], ref)
 
  180         elif isinstance(dataset, DatasetRef):
 
  181             self.
_put(values, dataset)
 
  183             raise TypeError(
"Dataset argument is not a type that can be used to put")
 
  185     def _checkMembership(self, ref: typing.Union[typing.List[DatasetRef], DatasetRef], inout: set):
 
  186         """Internal function used to check if a DatasetRef is part of the input quantum 
  188         This function will raise an exception if the ButlerQuantumContext is used to 
  189         get/put a DatasetRef which is not defined in the quantum. 
  193         ref : `list` of `DatasetRef` or `DatasetRef` 
  194             Either a list or a single `DatasetRef` to check 
  196             The connection type to check, e.g. either an input or an output. This prevents 
  197             both types needing to be checked for every operation, which may be important 
  198             for Quanta with lots of `DatasetRef`s. 
  200         if not isinstance(ref, list):
 
  203             if (r.datasetType, r.dataId) 
not in inout:
 
  204                 raise ValueError(
"DatasetRef is not part of the Quantum being processed")