LSSTApplications  20.0.0
LSSTDataManagementBasePackage
chebyshevBoundedFieldContinued.py
Go to the documentation of this file.
1 # This file is part of afw.
2 #
3 # Developed for the LSST Data Management System.
4 # This product includes software developed by the LSST Project
5 # (https://www.lsst.org).
6 # See the COPYRIGHT file at the top-level directory of this distribution
7 # for details of code ownership.
8 #
9 # This program is free software: you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation, either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <https://www.gnu.org/licenses/>.
21 
22 import numpy as np
23 
24 from lsst.utils import continueClass
25 from .chebyshevBoundedField import ChebyshevBoundedField, ChebyshevBoundedFieldControl
26 
27 __all__ = [] # import this module only for its side effects
28 
29 
30 @continueClass # noqa: F811
32  @classmethod
33  def approximate(cls, boundedField,
34  orderX=3, orderY=3,
35  nStepX=100, nStepY=100):
36  """
37  Approximate a bounded field as a ChebyshevBoundedField.
38 
39  Parameters
40  ----------
41  boundedField : `lsst.afw.math.BoundedField`
42  A bounded field to approximate
43  orderX : `int`, optional
44  Order of the Chebyshev polynomial in the x direction.
45  Default is 3.
46  orderY : `int`, optional
47  Order of the Chebyshev polynomial in the y direction.
48  Default is 3.
49  nStepX : `int`, optional
50  Number of x steps to approximate boundedField.
51  Default is 100.
52  nStepY : `int`, optional
53  Number of y steps to approximate boundedField.
54  Default is 100.
55 
56  Returns
57  -------
58  chebyshevBoundedField : `lsst.afw.math.ChebyshevBoundedField`
59  """
60 
61  ctrl = ChebyshevBoundedFieldControl()
62  ctrl.orderX = orderX
63  ctrl.orderY = orderY
64  ctrl.triangular = False
65 
66  bbox = boundedField.getBBox()
67 
68  xSteps = np.linspace(bbox.getMinX(), bbox.getMaxX(), nStepX)
69  ySteps = np.linspace(bbox.getMinY(), bbox.getMaxY(), nStepY)
70 
71  x = np.tile(xSteps, nStepY)
72  y = np.repeat(ySteps, nStepX)
73 
74  return cls.fit(bbox, x, y, boundedField.evaluate(x, y), ctrl)
lsst::afw::math.chebyshevBoundedFieldContinued.ChebyshevBoundedField.approximate
def approximate(cls, boundedField, orderX=3, orderY=3, nStepX=100, nStepY=100)
Definition: chebyshevBoundedFieldContinued.py:33
lsst::afw::math.chebyshevBoundedFieldContinued.ChebyshevBoundedField
Definition: chebyshevBoundedFieldContinued.py:31
lsst::utils
Definition: Backtrace.h:29