LSSTApplications  20.0.0
LSSTDataManagementBasePackage
leastSquares.cc
Go to the documentation of this file.
1 /*
2  * LSST Data Management System
3  * Copyright 2008-2016 AURA/LSST.
4  *
5  * This product includes software developed by the
6  * LSST Project (http://www.lsst.org/).
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the LSST License Statement and
19  * the GNU General Public License along with this program. If not,
20  * see <https://www.lsstcorp.org/LegalNotices/>.
21  */
22 
23 #include <pybind11/pybind11.h>
24 //#include <pybind11/operators.h>
25 //#include <pybind11/stl.h>
26 
27 #include "ndarray/pybind11.h"
28 //#include "ndarray/eigen.h"
29 
31 
32 namespace py = pybind11;
33 using namespace pybind11::literals;
34 
35 using namespace lsst::afw::math;
36 
37 template <typename T1, typename T2, int C1, int C2>
39  py::class_<LeastSquares> cls(mod, "LeastSquares");
40  py::enum_<LeastSquares::Factorization>(cls, "Factorization")
41  .value("NORMAL_EIGENSYSTEM", LeastSquares::Factorization::NORMAL_EIGENSYSTEM)
42  .value("NORMAL_CHOLESKY", LeastSquares::Factorization::NORMAL_CHOLESKY)
43  .value("DIRECT_SVD", LeastSquares::Factorization::DIRECT_SVD)
44  .export_values();
45  cls.def_static("fromDesignMatrix",
46  (LeastSquares(*)(ndarray::Array<T1, 2, C1> const &, ndarray::Array<T2, 1, C2> const &,
48  LeastSquares::fromDesignMatrix<T1, T2, C1, C2>,
49  "design"_a, "data"_a, "factorization"_a = LeastSquares::NORMAL_EIGENSYSTEM);
50  cls.def_static("fromNormalEquations",
51  (LeastSquares(*)(ndarray::Array<T1, 2, C1> const &, ndarray::Array<T2, 1, C2> const &,
53  LeastSquares::fromNormalEquations<T1, T2, C1, C2>,
54  "fisher"_a, "rhs"_a, "factorization"_a = LeastSquares::NORMAL_EIGENSYSTEM);
55  cls.def("getRank", &LeastSquares::getRank);
56  cls.def("setDesignMatrix",
57  (void (LeastSquares::*)(ndarray::Array<T1, 2, C1> const &, ndarray::Array<T2, 1, C2> const &)) &
58  LeastSquares::setDesignMatrix<T1, T2, C1, C2>);
59  cls.def("getDimension", &LeastSquares::getDimension);
60  cls.def("setNormalEquations",
61  (void (LeastSquares::*)(ndarray::Array<T1, 2, C1> const &, ndarray::Array<T2, 1, C2> const &)) &
62  LeastSquares::setNormalEquations<T1, T2, C1, C2>);
63  cls.def("getSolution", &LeastSquares::getSolution);
64  cls.def("getFisherMatrix", &LeastSquares::getFisherMatrix);
65  cls.def("getCovariance", &LeastSquares::getCovariance);
66  cls.def("getFactorization", &LeastSquares::getFactorization);
67  cls.def("getDiagnostic", &LeastSquares::getDiagnostic);
68  cls.def("getThreshold", &LeastSquares::getThreshold);
69  cls.def("setThreshold", &LeastSquares::setThreshold);
70 };
71 
72 PYBIND11_MODULE(leastSquares, mod) {
73  declareLeastSquares<double, double, 0, 0>(mod);
74 }
lsst::afw::math::LeastSquares
Solver for linear least-squares problems.
Definition: LeastSquares.h:67
lsst::afw::geom.transform.transformContinued.cls
cls
Definition: transformContinued.py:33
declareLeastSquares
void declareLeastSquares(py::module &mod)
Definition: leastSquares.cc:38
LeastSquares.h
lsst::afw::math
Definition: statistics.dox:6
lsst::afw::math::LeastSquares::Factorization
Factorization
Private implementation; forward-declared publicly so we can inherit from it in .cc.
Definition: LeastSquares.h:71
pybind11
Definition: _GenericMap.cc:40
PYBIND11_MODULE
PYBIND11_MODULE(leastSquares, mod)
Definition: leastSquares.cc:72
lsst::meas::modelfit.psf.psfContinued.module
module
Definition: psfContinued.py:42