27 import astropy.units
as u
29 import lsst.pex.config
as pexConf
31 from lsst.afw.image import abMagErrFromFluxErr, makePhotoCalibFromCalibZeroPoint
36 from .colorterms
import ColortermLibrary
38 __all__ = [
"PhotoCalTask",
"PhotoCalConfig"]
42 """Config for PhotoCal"""
43 match = pexConf.ConfigField(
"Match to reference catalog",
44 DirectMatchConfigWithoutLoader)
45 reserve = pexConf.ConfigurableField(target=ReserveSourcesTask, doc=
"Reserve sources from fitting")
46 fluxField = pexConf.Field(
48 default=
"slot_CalibFlux_instFlux",
49 doc=(
"Name of the source instFlux field to use. The associated flag field\n"
50 "('<name>_flags') will be implicitly included in badFlags."),
52 applyColorTerms = pexConf.Field(
55 doc=(
"Apply photometric color terms to reference stars? One of:\n"
56 "None: apply if colorterms and photoCatName are not None;\n"
57 " fail if color term data is not available for the specified ref catalog and filter.\n"
58 "True: always apply colorterms; fail if color term data is not available for the\n"
59 " specified reference catalog and filter.\n"
60 "False: do not apply."),
63 sigmaMax = pexConf.Field(
66 doc=
"maximum sigma to use when clipping",
69 nSigma = pexConf.Field(
74 useMedian = pexConf.Field(
77 doc=
"use median instead of mean to compute zeropoint",
79 nIter = pexConf.Field(
82 doc=
"number of iterations",
84 colorterms = pexConf.ConfigField(
85 dtype=ColortermLibrary,
86 doc=
"Library of photometric reference catalog name: color term dict",
88 photoCatName = pexConf.Field(
91 doc=(
"Name of photometric reference catalog; used to select a color term dict in colorterms."
92 " see also applyColorTerms"),
94 magErrFloor = pexConf.RangeField(
97 doc=
"Additional magnitude uncertainty to be added in quadrature with measurement errors.",
102 pexConf.Config.validate(self)
104 raise RuntimeError(
"applyColorTerms=True requires photoCatName is non-None")
106 raise RuntimeError(
"applyColorTerms=True requires colorterms be provided")
109 pexConf.Config.setDefaults(self)
110 self.
match.sourceSelection.doFlags =
True
111 self.
match.sourceSelection.flags.bad = [
112 "base_PixelFlags_flag_edge",
113 "base_PixelFlags_flag_interpolated",
114 "base_PixelFlags_flag_saturated",
116 self.
match.sourceSelection.doUnresolved =
True
128 @anchor PhotoCalTask_
130 @brief Calculate the zero point of an exposure given a lsst.afw.table.ReferenceMatchVector.
132 @section pipe_tasks_photocal_Contents Contents
134 - @ref pipe_tasks_photocal_Purpose
135 - @ref pipe_tasks_photocal_Initialize
136 - @ref pipe_tasks_photocal_IO
137 - @ref pipe_tasks_photocal_Config
138 - @ref pipe_tasks_photocal_Debug
139 - @ref pipe_tasks_photocal_Example
141 @section pipe_tasks_photocal_Purpose Description
143 @copybrief PhotoCalTask
145 Calculate an Exposure's zero-point given a set of flux measurements of stars matched to an input catalogue.
146 The type of flux to use is specified by PhotoCalConfig.fluxField.
148 The algorithm clips outliers iteratively, with parameters set in the configuration.
150 @note This task can adds fields to the schema, so any code calling this task must ensure that
151 these columns are indeed present in the input match list; see @ref pipe_tasks_photocal_Example
153 @section pipe_tasks_photocal_Initialize Task initialisation
155 @copydoc \_\_init\_\_
157 @section pipe_tasks_photocal_IO Inputs/Outputs to the run method
161 @section pipe_tasks_photocal_Config Configuration parameters
163 See @ref PhotoCalConfig
165 @section pipe_tasks_photocal_Debug Debug variables
167 The @link lsst.pipe.base.cmdLineTask.CmdLineTask command line task@endlink interface supports a
168 flag @c -d to import @b debug.py from your @c PYTHONPATH; see @ref baseDebug for more about @b debug.py files.
170 The available variables in PhotoCalTask are:
173 <DD> If True enable other debug outputs
174 <DT> @c displaySources
175 <DD> If True, display the exposure on the display's frame 1 and overlay the source catalogue.
178 <DD> Reserved objects
180 <DD> Objects used in the photometric calibration
183 <DD> Make a scatter plot of flux v. reference magnitude as a function of reference magnitude.
184 - good objects in blue
185 - rejected objects in red
186 (if @c scatterPlot is 2 or more, prompt to continue after each iteration)
189 @section pipe_tasks_photocal_Example A complete example of using PhotoCalTask
191 This code is in @link examples/photoCalTask.py@endlink, and can be run as @em e.g.
193 examples/photoCalTask.py
195 @dontinclude photoCalTask.py
197 Import the tasks (there are some other standard imports; read the file for details)
198 @skipline from lsst.pipe.tasks.astrometry
199 @skipline measPhotocal
201 We need to create both our tasks before processing any data as the task constructors
202 can add extra columns to the schema which we get from the input catalogue, @c scrCat:
206 @skip AstrometryTask.ConfigClass
208 (that @c filterMap line is because our test code doesn't use a filter that the reference catalogue recognises,
209 so we tell it to use the @c r band)
215 If the schema has indeed changed we need to add the new columns to the source table
216 (yes; this should be easier!)
220 We're now ready to process the data (we could loop over multiple exposures/catalogues using the same
225 We can then unpack and use the results:
230 To investigate the @ref pipe_tasks_photocal_Debug, put something like
234 di = lsstDebug.getInfo(name) # N.b. lsstDebug.Info(name) would call us recursively
235 if name.endswith(".PhotoCal"):
240 lsstDebug.Info = DebugInfo
242 into your debug.py file and run photoCalTask.py with the @c --debug flag.
244 ConfigClass = PhotoCalConfig
245 _DefaultName =
"photoCal"
247 def __init__(self, refObjLoader, schema=None, **kwds):
248 """!Create the photometric calibration task. See PhotoCalTask.init for documentation
250 pipeBase.Task.__init__(self, **kwds)
253 if schema
is not None:
254 self.
usedKey = schema.addField(
"calib_photometry_used", type=
"Flag",
255 doc=
"set if source was used in photometric calibration")
259 name=
"match", parentTask=self)
260 self.makeSubtask(
"reserve", columnName=
"calib_photometry", schema=schema,
261 doc=
"set if source was reserved from photometric calibration")
264 """Return a struct containing the source catalog keys for fields used
270 schema : `lsst.afw.table.schema`
271 Schema of the catalog to get keys from.
275 result : `lsst.pipe.base.Struct`
276 Result struct with components:
278 - ``instFlux``: Instrument flux key.
279 - ``instFluxErr``: Instrument flux error key.
281 instFlux = schema.find(self.config.fluxField).key
282 instFluxErr = schema.find(self.config.fluxField +
"Err").key
283 return pipeBase.Struct(instFlux=instFlux, instFluxErr=instFluxErr)
287 """!Extract magnitude and magnitude error arrays from the given matches.
289 @param[in] matches Reference/source matches, a @link lsst::afw::table::ReferenceMatchVector@endlink
290 @param[in] filterName Name of filter being calibrated
291 @param[in] sourceKeys Struct of source catalog keys, as returned by getSourceKeys()
293 @return Struct containing srcMag, refMag, srcMagErr, refMagErr, and magErr numpy arrays
294 where magErr is an error in the magnitude; the error in srcMag - refMag
295 If nonzero, config.magErrFloor will be added to magErr *only* (not srcMagErr or refMagErr), as
296 magErr is what is later used to determine the zero point.
297 Struct also contains refFluxFieldList: a list of field names of the reference catalog used for fluxes
299 @note These magnitude arrays are the @em inputs to the photometric calibration, some may have been
300 discarded by clipping while estimating the calibration (https://jira.lsstcorp.org/browse/DM-813)
302 srcInstFluxArr = np.array([m.second.get(sourceKeys.instFlux)
for m
in matches])
303 srcInstFluxErrArr = np.array([m.second.get(sourceKeys.instFluxErr)
for m
in matches])
304 if not np.all(np.isfinite(srcInstFluxErrArr)):
306 self.log.
warn(
"Source catalog does not have flux uncertainties; using sqrt(flux).")
307 srcInstFluxErrArr = np.sqrt(srcInstFluxArr)
310 referenceFlux = (0*u.ABmag).to_value(u.nJy)
311 srcInstFluxArr = srcInstFluxArr * referenceFlux
312 srcInstFluxErrArr = srcInstFluxErrArr * referenceFlux
315 raise RuntimeError(
"No reference stars are available")
316 refSchema = matches[0].first.schema
318 applyColorTerms = self.config.applyColorTerms
319 applyCTReason =
"config.applyColorTerms is %s" % (self.config.applyColorTerms,)
320 if self.config.applyColorTerms
is None:
322 ctDataAvail = len(self.config.colorterms.data) > 0
323 photoCatSpecified = self.config.photoCatName
is not None
324 applyCTReason +=
" and data %s available" % (
"is" if ctDataAvail
else "is not")
325 applyCTReason +=
" and photoRefCat %s provided" % (
"is" if photoCatSpecified
else "is not")
326 applyColorTerms = ctDataAvail
and photoCatSpecified
329 self.log.
info(
"Applying color terms for filterName=%r, config.photoCatName=%s because %s",
330 filterName, self.config.photoCatName, applyCTReason)
331 colorterm = self.config.colorterms.getColorterm(
332 filterName=filterName, photoCatName=self.config.photoCatName, doRaise=
True)
336 refCat.reserve(len(matches))
338 record = refCat.addNew()
339 record.assign(x.first)
341 refMagArr, refMagErrArr = colorterm.getCorrectedMagnitudes(refCat, filterName)
342 fluxFieldList = [
getRefFluxField(refSchema, filt)
for filt
in (colorterm.primary,
343 colorterm.secondary)]
346 self.log.
info(
"Not applying color terms because %s", applyCTReason)
351 fluxKey = refSchema.find(fluxField).key
352 refFluxArr = np.array([m.first.get(fluxKey)
for m
in matches])
355 fluxErrKey = refSchema.find(fluxField +
"Err").key
356 refFluxErrArr = np.array([m.first.get(fluxErrKey)
for m
in matches])
359 self.log.
warn(
"Reference catalog does not have flux uncertainties for %s; using sqrt(flux).",
361 refFluxErrArr = np.sqrt(refFluxArr)
363 refMagArr = u.Quantity(refFluxArr, u.nJy).to_value(u.ABmag)
368 srcMagArr = u.Quantity(srcInstFluxArr, u.nJy).to_value(u.ABmag)
373 if self.config.magErrFloor != 0.0:
374 magErrArr = (magErrArr**2 + self.config.magErrFloor**2)**0.5
378 good = np.isfinite(srcMagArr) & np.isfinite(refMagArr)
380 return pipeBase.Struct(
381 srcMag=srcMagArr[good],
382 refMag=refMagArr[good],
383 magErr=magErrArr[good],
384 srcMagErr=srcMagErrArr[good],
385 refMagErr=refMagErrArr[good],
386 refFluxFieldList=fluxFieldList,
390 def run(self, exposure, sourceCat, expId=0):
391 """!Do photometric calibration - select matches to use and (possibly iteratively) compute
394 @param[in] exposure Exposure upon which the sources in the matches were detected.
395 @param[in] sourceCat A catalog of sources to use in the calibration
396 (@em i.e. a list of lsst.afw.table.Match with
397 @c first being of type lsst.afw.table.SimpleRecord and @c second type lsst.afw.table.SourceRecord ---
398 the reference object and matched object respectively).
399 (will not be modified except to set the outputField if requested.).
402 - photoCalib -- @link lsst::afw::image::PhotoCalib@endlink object containing the calibration
403 - arrays ------ Magnitude arrays returned be PhotoCalTask.extractMagArrays
404 - matches ----- Final ReferenceMatchVector, as returned by PhotoCalTask.selectMatches.
405 - zp ---------- Photometric zero point (mag)
406 - sigma ------- Standard deviation of fit of photometric zero point (mag)
407 - ngood ------- Number of sources used to fit photometric zero point
409 The exposure is only used to provide the name of the filter being calibrated (it may also be
410 used to generate debugging plots).
412 The reference objects:
413 - Must include a field @c photometric; True for objects which should be considered as
414 photometric standards
415 - Must include a field @c flux; the flux used to impose a magnitude limit and also to calibrate
416 the data to (unless a color term is specified, in which case ColorTerm.primary is used;
417 See https://jira.lsstcorp.org/browse/DM-933)
418 - May include a field @c stargal; if present, True means that the object is a star
419 - May include a field @c var; if present, True means that the object is variable
421 The measured sources:
422 - Must include PhotoCalConfig.fluxField; the flux measurement to be used for calibration
424 @throws RuntimeError with the following strings:
427 <DT> No matches to use for photocal
428 <DD> No matches are available (perhaps no sources/references were selected by the matcher).
429 <DT> No reference stars are available
430 <DD> No matches are available from which to extract magnitudes.
436 displaySources = display
and lsstDebug.Info(__name__).displaySources
440 from matplotlib
import pyplot
444 self.
fig = pyplot.figure()
446 filterName = exposure.getFilter().getName()
449 matchResults = self.
match.
run(sourceCat, filterName)
450 matches = matchResults.matches
452 reserveResults = self.reserve.
run([mm.second
for mm
in matches], expId=expId)
455 if reserveResults.reserved.sum() > 0:
456 matches = [mm
for mm, use
in zip(matches, reserveResults.use)
if use]
457 if len(matches) == 0:
458 raise RuntimeError(
"No matches to use for photocal")
461 mm.second.set(self.
usedKey,
True)
465 arrays = self.
extractMagArrays(matches=matches, filterName=filterName, sourceKeys=sourceKeys)
468 r = self.
getZeroPoint(arrays.srcMag, arrays.refMag, arrays.magErr)
469 self.log.
info(
"Magnitude zero point: %f +/- %f from %d stars", r.zp, r.sigma, r.ngood)
472 flux0 = 10**(0.4*r.zp)
473 flux0err = 0.4*math.log(10)*flux0*r.sigma
476 return pipeBase.Struct(
477 photoCalib=photoCalib,
486 """Display sources we'll use for photocal
488 Sources that will be actually used will be green.
489 Sources reserved from the fit will be red.
493 exposure : `lsst.afw.image.ExposureF`
495 matches : `list` of `lsst.afw.table.RefMatch`
496 Matches used for photocal.
497 reserved : `numpy.ndarray` of type `bool`
498 Boolean array indicating sources that are reserved.
500 Frame number for display.
502 disp = afwDisplay.getDisplay(frame=frame)
503 disp.mtv(exposure, title=
"photocal")
504 with disp.Buffering():
505 for mm, rr
in zip(matches, reserved):
506 x, y = mm.second.getCentroid()
507 ctype = afwDisplay.RED
if rr
else afwDisplay.GREEN
508 disp.dot(
"o", x, y, size=4, ctype=ctype)
511 """!Flux calibration code, returning (ZeroPoint, Distribution Width, Number of stars)
513 We perform nIter iterations of a simple sigma-clipping algorithm with a couple of twists:
514 1. We use the median/interquartile range to estimate the position to clip around, and the
516 2. We never allow sigma to go _above_ a critical value sigmaMax --- if we do, a sufficiently
517 large estimate will prevent the clipping from ever taking effect.
518 3. Rather than start with the median we start with a crude mode. This means that a set of magnitude
519 residuals with a tight core and asymmetrical outliers will start in the core. We use the width of
520 this core to set our maximum sigma (see 2.)
523 - zp ---------- Photometric zero point (mag)
524 - sigma ------- Standard deviation of fit of zero point (mag)
525 - ngood ------- Number of sources used to fit zero point
527 sigmaMax = self.config.sigmaMax
531 indArr = np.argsort(dmag)
534 if srcErr
is not None:
535 dmagErr = srcErr[indArr]
537 dmagErr = np.ones(len(dmag))
540 ind_noNan = np.array([i
for i
in range(len(dmag))
541 if (
not np.isnan(dmag[i])
and not np.isnan(dmagErr[i]))])
542 dmag = dmag[ind_noNan]
543 dmagErr = dmagErr[ind_noNan]
545 IQ_TO_STDEV = 0.741301109252802
550 for i
in range(self.config.nIter):
561 hist, edges = np.histogram(dmag, nhist, new=
True)
563 hist, edges = np.histogram(dmag, nhist)
564 imode = np.arange(nhist)[np.where(hist == hist.max())]
566 if imode[-1] - imode[0] + 1 == len(imode):
570 center = 0.5*(edges[imode[0]] + edges[imode[-1] + 1])
572 peak = sum(hist[imode])/len(imode)
576 while j >= 0
and hist[j] > 0.5*peak:
579 q1 = dmag[sum(hist[range(j)])]
582 while j < nhist
and hist[j] > 0.5*peak:
584 j =
min(j, nhist - 1)
585 j =
min(sum(hist[range(j)]), npt - 1)
589 q1 = dmag[int(0.25*npt)]
590 q3 = dmag[int(0.75*npt)]
597 self.log.
debug(
"Photo calibration histogram: center = %.2f, sig = %.2f", center, sig)
601 sigmaMax = dmag[-1] - dmag[0]
603 center = np.median(dmag)
604 q1 = dmag[int(0.25*npt)]
605 q3 = dmag[int(0.75*npt)]
610 if self.config.useMedian:
611 center = np.median(gdmag)
613 gdmagErr = dmagErr[good]
614 center = np.average(gdmag, weights=gdmagErr)
616 q3 = gdmag[
min(int(0.75*npt + 0.5), npt - 1)]
617 q1 = gdmag[
min(int(0.25*npt + 0.5), npt - 1)]
619 sig = IQ_TO_STDEV*(q3 - q1)
621 good =
abs(dmag - center) < self.config.nSigma*
min(sig, sigmaMax)
628 axes = self.
fig.add_axes((0.1, 0.1, 0.85, 0.80))
630 axes.plot(ref[good], dmag[good] - center,
"b+")
631 axes.errorbar(ref[good], dmag[good] - center, yerr=dmagErr[good],
632 linestyle=
'', color=
'b')
634 bad = np.logical_not(good)
635 if len(ref[bad]) > 0:
636 axes.plot(ref[bad], dmag[bad] - center,
"r+")
637 axes.errorbar(ref[bad], dmag[bad] - center, yerr=dmagErr[bad],
638 linestyle=
'', color=
'r')
640 axes.plot((-100, 100), (0, 0),
"g-")
642 axes.plot((-100, 100), x*0.05*np.ones(2),
"g--")
644 axes.set_ylim(-1.1, 1.1)
645 axes.set_xlim(24, 13)
646 axes.set_xlabel(
"Reference")
647 axes.set_ylabel(
"Reference - Instrumental")
653 while i == 0
or reply !=
"c":
655 reply = input(
"Next iteration? [ynhpc] ")
660 print(
"Options: c[ontinue] h[elp] n[o] p[db] y[es]", file=sys.stderr)
663 if reply
in (
"",
"c",
"n",
"p",
"y"):
666 print(
"Unrecognised response: %s" % reply, file=sys.stderr)
673 except Exception
as e:
674 print(
"Error plotting in PhotoCal.getZeroPoint: %s" % e, file=sys.stderr)
681 msg =
"PhotoCal.getZeroPoint: no good stars remain"
684 center = np.average(dmag, weights=dmagErr)
685 msg +=
" on first iteration; using average of all calibration stars"
689 return pipeBase.Struct(
693 elif ngood == old_ngood:
699 dmagErr = dmagErr[good]
702 dmagErr = dmagErr[good]
703 zp, weightSum = np.average(dmag, weights=1/dmagErr**2, returned=
True)
704 sigma = np.sqrt(1.0/weightSum)
705 return pipeBase.Struct(