LSSTApplications  19.0.0-14-gb0260a2+72efe9b372,20.0.0+7927753e06,20.0.0+8829bf0056,20.0.0+995114c5d2,20.0.0+b6f4b2abd1,20.0.0+bddc4f4cbe,20.0.0-1-g253301a+8829bf0056,20.0.0-1-g2b7511a+0d71a2d77f,20.0.0-1-g5b95a8c+7461dd0434,20.0.0-12-g321c96ea+23efe4bbff,20.0.0-16-gfab17e72e+fdf35455f6,20.0.0-2-g0070d88+ba3ffc8f0b,20.0.0-2-g4dae9ad+ee58a624b3,20.0.0-2-g61b8584+5d3db074ba,20.0.0-2-gb780d76+d529cf1a41,20.0.0-2-ged6426c+226a441f5f,20.0.0-2-gf072044+8829bf0056,20.0.0-2-gf1f7952+ee58a624b3,20.0.0-20-geae50cf+e37fec0aee,20.0.0-25-g3dcad98+544a109665,20.0.0-25-g5eafb0f+ee58a624b3,20.0.0-27-g64178ef+f1f297b00a,20.0.0-3-g4cc78c6+e0676b0dc8,20.0.0-3-g8f21e14+4fd2c12c9a,20.0.0-3-gbd60e8c+187b78b4b8,20.0.0-3-gbecbe05+48431fa087,20.0.0-38-ge4adf513+a12e1f8e37,20.0.0-4-g97dc21a+544a109665,20.0.0-4-gb4befbc+087873070b,20.0.0-4-gf910f65+5d3db074ba,20.0.0-5-gdfe0fee+199202a608,20.0.0-5-gfbfe500+d529cf1a41,20.0.0-6-g64f541c+d529cf1a41,20.0.0-6-g9a5b7a1+a1cd37312e,20.0.0-68-ga3f3dda+5fca18c6a4,20.0.0-9-g4aef684+e18322736b,w.2020.45
LSSTDataManagementBasePackage
NormalizedAngle.cc
Go to the documentation of this file.
1 /*
2  * LSST Data Management System
3  * Copyright 2014-2015 AURA/LSST.
4  *
5  * This product includes software developed by the
6  * LSST Project (http://www.lsst.org/).
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the LSST License Statement and
19  * the GNU General Public License along with this program. If not,
20  * see <https://www.lsstcorp.org/LegalNotices/>.
21  */
22 
25 
27 
28 #include "lsst/sphgeom/LonLat.h"
29 #include "lsst/sphgeom/Vector3d.h"
30 
31 
32 namespace lsst {
33 namespace sphgeom {
34 
36  NormalizedAngle const & b)
37 {
39  double a1 = std::fabs(a.asRadians() - b.asRadians());
40  double a2 = 2.0 * PI - a1;
41  x._a = Angle(std::min(a1, a2));
42  return x;
43 }
44 
46  NormalizedAngle const & b)
47 {
49  double c = 0.5 * (a.asRadians() + b.asRadians());
50  if (a <= b) {
51  x._a = Angle(c);
52  } else {
53  // The result is (a + b + 2π) / 2, normalized to [0, 2π)
54  x._a = Angle((c < PI) ? (c + PI) : (c - PI));
55  }
56  return x;
57 }
58 
60  double x = sin((p1.getLon() - p2.getLon()) * 0.5);
61  x *= x;
62  double y = sin((p1.getLat() - p2.getLat()) * 0.5);
63  y *= y;
64  double z = cos((p1.getLat() + p2.getLat()) * 0.5);
65  z *= z;
66  // Compute the square of the sine of half of the desired angle. This is
67  // easily shown to be be one fourth of the squared Euclidian distance
68  // (chord length) between p1 and p2.
69  double sha2 = (x * (z - y) + y);
70  // Avoid domain errors in asin and sqrt due to rounding errors.
71  if (sha2 < 0.0) {
72  _a = Angle(0.0);
73  } else if (sha2 >= 1.0) {
74  _a = Angle(PI);
75  } else {
76  _a = Angle(2.0 * std::asin(std::sqrt(sha2)));
77  }
78 }
79 
81  double s = v1.cross(v2).getNorm();
82  double c = v1.dot(v2);
83  if (s == 0.0 && c == 0.0) {
84  // Avoid the atan2(±0, -0) = ±PI special case.
85  _a = Angle(0.0);
86  } else {
87  _a = Angle(std::atan2(s, c));
88  }
89 }
90 
91 }} // namespace lsst::sphgeom
y
int y
Definition: SpanSet.cc:49
lsst::sphgeom::sin
double sin(Angle const &a)
Definition: Angle.h:102
lsst::sphgeom::PI
constexpr double PI
Definition: constants.h:36
std::fabs
T fabs(T... args)
std::atan2
T atan2(T... args)
std::asin
T asin(T... args)
lsst::sphgeom::LonLat
LonLat represents a spherical coordinate (longitude/latitude angle) pair.
Definition: LonLat.h:48
lsst::sphgeom::NormalizedAngle::center
static NormalizedAngle center(NormalizedAngle const &a, NormalizedAngle const &b)
For two normalized angles a and b, center(a, b) returns the angle m such that a.getAngleTo(m) is equa...
Definition: NormalizedAngle.cc:45
std::sqrt
T sqrt(T... args)
lsst::sphgeom::Vector3d
Vector3d is a vector in ℝ³ with components stored in double precision.
Definition: Vector3d.h:44
lsst::afw::table::Angle
lsst::geom::Angle Angle
Definition: misc.h:33
lsst::sphgeom::Vector3d::dot
double dot(Vector3d const &v) const
dot returns the inner product of this vector and v.
Definition: Vector3d.h:73
lsst::sphgeom::Vector3d::getNorm
double getNorm() const
getNorm returns the L2 norm of this vector.
Definition: Vector3d.h:81
z
double z
Definition: Match.cc:44
x
double x
Definition: ChebyshevBoundedField.cc:277
Vector3d.h
This file declares a class for representing vectors in ℝ³.
lsst::sphgeom::Vector3d::cross
Vector3d cross(Vector3d const &v) const
cross returns the cross product of this vector and v.
Definition: Vector3d.h:101
lsst::sphgeom::LonLat::getLat
Angle getLat() const
Definition: LonLat.h:90
b
table::Key< int > b
Definition: TransmissionCurve.cc:467
lsst
A base class for image defects.
Definition: imageAlgorithm.dox:1
std::min
T min(T... args)
lsst::sphgeom::NormalizedAngle::NormalizedAngle
NormalizedAngle()
This constructor creates a NormalizedAngle with a value of zero.
Definition: NormalizedAngle.h:71
lsst::sphgeom::NormalizedAngle::between
static NormalizedAngle between(NormalizedAngle const &a, NormalizedAngle const &b)
For two angles a and b, between(a, b) returns the smaller of a.getAngleTo(b) and b....
Definition: NormalizedAngle.cc:35
a
table::Key< int > a
Definition: TransmissionCurve.cc:466
LonLat.h
This file contains a class representing spherical coordinates.
NormalizedAngle.h
This file declares a class for representing normalized angles.
lsst::sphgeom::NormalizedAngle
NormalizedAngle is an angle that lies in the range [0, 2π), with one exception - a NormalizedAngle ca...
Definition: NormalizedAngle.h:41
lsst::sphgeom::cos
double cos(Angle const &a)
Definition: Angle.h:103
lsst::sphgeom::LonLat::getLon
NormalizedAngle getLon() const
Definition: LonLat.h:88