LSSTApplications  19.0.0-14-gb0260a2+72efe9b372,20.0.0+7927753e06,20.0.0+8829bf0056,20.0.0+995114c5d2,20.0.0+b6f4b2abd1,20.0.0+bddc4f4cbe,20.0.0-1-g253301a+8829bf0056,20.0.0-1-g2b7511a+0d71a2d77f,20.0.0-1-g5b95a8c+7461dd0434,20.0.0-12-g321c96ea+23efe4bbff,20.0.0-16-gfab17e72e+fdf35455f6,20.0.0-2-g0070d88+ba3ffc8f0b,20.0.0-2-g4dae9ad+ee58a624b3,20.0.0-2-g61b8584+5d3db074ba,20.0.0-2-gb780d76+d529cf1a41,20.0.0-2-ged6426c+226a441f5f,20.0.0-2-gf072044+8829bf0056,20.0.0-2-gf1f7952+ee58a624b3,20.0.0-20-geae50cf+e37fec0aee,20.0.0-25-g3dcad98+544a109665,20.0.0-25-g5eafb0f+ee58a624b3,20.0.0-27-g64178ef+f1f297b00a,20.0.0-3-g4cc78c6+e0676b0dc8,20.0.0-3-g8f21e14+4fd2c12c9a,20.0.0-3-gbd60e8c+187b78b4b8,20.0.0-3-gbecbe05+48431fa087,20.0.0-38-ge4adf513+a12e1f8e37,20.0.0-4-g97dc21a+544a109665,20.0.0-4-gb4befbc+087873070b,20.0.0-4-gf910f65+5d3db074ba,20.0.0-5-gdfe0fee+199202a608,20.0.0-5-gfbfe500+d529cf1a41,20.0.0-6-g64f541c+d529cf1a41,20.0.0-6-g9a5b7a1+a1cd37312e,20.0.0-68-ga3f3dda+5fca18c6a4,20.0.0-9-g4aef684+e18322736b,w.2020.45
LSSTDataManagementBasePackage
ScaledBasis1d.h
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 /*
3  * Developed for the LSST Data Management System.
4  * This product includes software developed by the LSST Project
5  * (https://www.lsst.org).
6  * See the COPYRIGHT file at the top-level directory of this distribution
7  * for details of code ownership.
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program. If not, see <https://www.gnu.org/licenses/>.
21  */
22 #ifndef LSST_AFW_MATH_POLYNOMIALS_ScaledBasis1d_h_INCLUDED
23 #define LSST_AFW_MATH_POLYNOMIALS_ScaledBasis1d_h_INCLUDED
24 
27 
28 namespace lsst { namespace geom { namespace polynomials {
29 
30 template <typename Basis>
31 class Function1d;
32 
43 template <typename Nested>
45 public:
46 
49 
52 
54  explicit ScaledBasis1d(Nested const & nested, Scaling1d const & scaling) :
55  _nested(nested),
56  _scaling(scaling)
57  {}
58 
73  ScaledBasis1d(std::size_t order, double min, double max) :
74  _nested(order),
75  _scaling(makeUnitRangeScaling1d(min, max))
76  {}
77 
79  ScaledBasis1d(ScaledBasis1d const &) = default;
80 
83 
85  ScaledBasis1d & operator=(ScaledBasis1d const &) = default;
86 
89 
91  Nested const & getNested() const noexcept { return _nested; }
92 
94  Scaling1d const & getScaling() const noexcept { return _scaling; }
95 
97  std::size_t getOrder() const { return getNested().getOrder(); }
98 
100  std::size_t size() const { return getNested().size(); }
101 
108  Scaled scaled(Scaling1d const & first) const {
109  return getNested().scaled(first.then(getScaling()));
110  }
111 
130  template <typename Vector>
131  double sumWith(double x, Vector const & coefficients, SumMode mode=SumMode::FAST) const {
132  return getNested().sumWith(getScaling().applyForward(x), coefficients, mode);
133  }
134 
145  template <typename Vector>
146  void fill(double x, Vector && basis) const {
147  return getNested().fill(getScaling().applyForward(x), std::forward<Vector>(basis));
148  }
149 
150 private:
151  Nested _nested;
152  Scaling1d _scaling;
153 };
154 
155 }}} // namespace lsst::geom::polynomials
156 
157 #endif // !LSST_AFW_MATH_POLYNOMIALS_ScaledBasis1d_h_INCLUDED
lsst::geom::polynomials::ScaledBasis1d::size
std::size_t size() const
Return the number of elements in the basis.
Definition: ScaledBasis1d.h:100
nested
table::Key< int > nested
Definition: TransmissionCurve.cc:555
SafeSum.h
coefficients
ndarray::Array< double const, 2, 2 > coefficients
Definition: ChebyshevBoundedField.cc:276
lsst::geom::polynomials::Scaling1d
A 1-d affine transform that can be used to map one interval to another.
Definition: Scaling1d.h:46
lsst::afw::table._match.first
first
Definition: _match.py:74
lsst::geom::polynomials::ScaledBasis1d::sumWith
double sumWith(double x, Vector const &coefficients, SumMode mode=SumMode::FAST) const
Evaluate a basis expansion with the given coefficients.
Definition: ScaledBasis1d.h:131
lsst::geom::polynomials::ScaledBasis1d::ScaledBasis1d
ScaledBasis1d(ScaledBasis1d const &)=default
Default copy constructor.
Scaling1d.h
lsst::geom::polynomials::ScaledBasis1d::operator=
ScaledBasis1d & operator=(ScaledBasis1d const &)=default
Default copy assignment.
lsst::geom::polynomials::ScaledBasis1d::getScaling
Scaling1d const & getScaling() const noexcept
Return the scaling transform.
Definition: ScaledBasis1d.h:94
lsst::geom::polynomials::makeUnitRangeScaling1d
Scaling1d makeUnitRangeScaling1d(double min, double max) noexcept
Return a Scaling1d that maps the interval [min, max] to [-1, 1].
Definition: Scaling1d.h:120
lsst::geom::polynomials::ScaledBasis1d
A 1-d basis that transforms all input points before evaluating nested basis.
Definition: ScaledBasis1d.h:44
x
double x
Definition: ChebyshevBoundedField.cc:277
lsst::geom::polynomials::SumMode
SumMode
Enum used to control how to sum polynomial terms.
Definition: SafeSum.h:32
lsst::geom::polynomials::ScaledBasis1d::operator=
ScaledBasis1d & operator=(ScaledBasis1d &&)=default
Default move assignment.
lsst::meas::modelfit::Vector
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
Definition: common.h:46
max
int max
Definition: BoundedField.cc:104
basis
table::Key< table::Array< double > > basis
Definition: PsfexPsf.cc:361
lsst::geom::polynomials::Function1d
A 1-d function defined by a series expansion and its coefficients.
Definition: Function1d.h:42
lsst::geom::polynomials::ScaledBasis1d::scaled
Scaled scaled(Scaling1d const &first) const
Return a further-scaled basis with the same order.
Definition: ScaledBasis1d.h:108
lsst
A base class for image defects.
Definition: imageAlgorithm.dox:1
lsst::geom
Definition: AffineTransform.h:36
lsst::geom::polynomials::ScaledBasis1d::ScaledBasis1d
ScaledBasis1d(Nested const &nested, Scaling1d const &scaling)
Construct a scaled basis from a nested basis and a scaling transform.
Definition: ScaledBasis1d.h:54
min
int min
Definition: BoundedField.cc:103
lsst::geom::polynomials::ScaledBasis1d::fill
void fill(double x, Vector &&basis) const
Evaluate the basis at a given point.
Definition: ScaledBasis1d.h:146
std::size_t
lsst::geom::polynomials::ScaledBasis1d::ScaledBasis1d
ScaledBasis1d(ScaledBasis1d &&)=default
Default move constructor.
lsst::geom::polynomials::ScaledBasis1d::getOrder
std::size_t getOrder() const
Return the order of the basis.
Definition: ScaledBasis1d.h:97
scaling
table::Key< double > scaling
Definition: PixelAreaBoundedField.cc:133
lsst::geom::polynomials::SumMode::FAST
@ FAST
Summation using regular floating-point addition.
lsst::geom::polynomials::ScaledBasis1d::ScaledBasis1d
ScaledBasis1d(std::size_t order, double min, double max)
Construct a basis that remaps the given interval to [-1, 1] before evaluating the nested basis.
Definition: ScaledBasis1d.h:73
lsst::geom::polynomials::ScaledBasis1d::getNested
Nested const & getNested() const noexcept
Return the nested basis.
Definition: ScaledBasis1d.h:91