35 from .makeKernelBasisList
import makeKernelBasisList
36 from .psfMatch
import PsfMatchTask, PsfMatchConfigDF, PsfMatchConfigAL
37 from .
import utils
as diffimUtils
38 from .
import diffimLib
39 from .
import diffimTools
42 __all__ = [
"ImagePsfMatchConfig",
"ImagePsfMatchTask",
"subtractAlgorithmRegistry"]
44 sigma2fwhm = 2.*np.sqrt(2.*np.log(2.))
48 """Configuration for image-to-image Psf matching.
50 kernel = pexConfig.ConfigChoiceField(
58 selectDetection = pexConfig.ConfigurableField(
59 target=SourceDetectionTask,
60 doc=
"Initial detections used to feed stars to kernel fitting",
62 selectMeasurement = pexConfig.ConfigurableField(
63 target=SingleFrameMeasurementTask,
64 doc=
"Initial measurements used to feed stars to kernel fitting",
74 self.
selectMeasurement.algorithms.names = (
'base_SdssCentroid',
'base_PsfFlux',
'base_PixelFlags',
75 'base_SdssShape',
'base_GaussianFlux',
'base_SkyCoord')
82 """Psf-match two MaskedImages or Exposures using the sources in the images.
87 Arguments to be passed to lsst.ip.diffim.PsfMatchTask.__init__
89 Keyword arguments to be passed to lsst.ip.diffim.PsfMatchTask.__init__
93 Upon initialization, the kernel configuration is defined by self.config.kernel.active.
94 The task creates an lsst.afw.math.Warper from the subConfig self.config.kernel.active.warpingConfig.
95 A schema for the selection and measurement of candidate lsst.ip.diffim.KernelCandidates is
96 defined, and used to initize subTasks selectDetection (for candidate detection) and selectMeasurement
97 (for candidate measurement).
101 Build a Psf-matching kernel using two input images, either as MaskedImages (in which case they need
102 to be astrometrically aligned) or Exposures (in which case astrometric alignment will happen by
103 default but may be turned off). This requires a list of input Sources which may be provided
104 by the calling Task; if not, the Task will perform a coarse source detection
105 and selection for this purpose. Sources are vetted for signal-to-noise and masked pixels
106 (in both the template and science image), and substamps around each acceptable
107 source are extracted and used to create an instance of KernelCandidate.
108 Each KernelCandidate is then placed within a lsst.afw.math.SpatialCellSet, which is used by an ensemble of
109 lsst.afw.math.CandidateVisitor instances to build the Psf-matching kernel. These visitors include, in
110 the order that they are called: BuildSingleKernelVisitor, KernelSumVisitor, BuildSpatialKernelVisitor,
111 and AssessSpatialKernelVisitor.
113 Sigma clipping of KernelCandidates is performed as follows:
115 - BuildSingleKernelVisitor, using the substamp diffim residuals from the per-source kernel fit,
116 if PsfMatchConfig.singleKernelClipping is True
117 - KernelSumVisitor, using the mean and standard deviation of the kernel sum from all candidates,
118 if PsfMatchConfig.kernelSumClipping is True
119 - AssessSpatialKernelVisitor, using the substamp diffim ressiduals from the spatial kernel fit,
120 if PsfMatchConfig.spatialKernelClipping is True
122 The actual solving for the kernel (and differential background model) happens in
123 lsst.ip.diffim.PsfMatchTask._solve. This involves a loop over the SpatialCellSet that first builds the
124 per-candidate matching kernel for the requested number of KernelCandidates per cell
125 (PsfMatchConfig.nStarPerCell). The quality of this initial per-candidate difference image is examined,
126 using moments of the pixel residuals in the difference image normalized by the square root of the variance
127 (i.e. sigma); ideally this should follow a normal (0, 1) distribution,
128 but the rejection thresholds are set
129 by the config (PsfMatchConfig.candidateResidualMeanMax and PsfMatchConfig.candidateResidualStdMax).
130 All candidates that pass this initial build are then examined en masse to find the
131 mean/stdev of the kernel sums across all candidates.
132 Objects that are significantly above or below the mean,
133 typically due to variability or sources that are saturated in one image but not the other,
134 are also rejected.This threshold is defined by PsfMatchConfig.maxKsumSigma.
135 Finally, a spatial model is built using all currently-acceptable candidates,
136 and the spatial model used to derive a second set of (spatial) residuals
137 which are again used to reject bad candidates, using the same thresholds as above.
141 There is no run() method for this Task. Instead there are 4 methods that
142 may be used to invoke the Psf-matching. These are
143 `~lsst.ip.diffim.imagePsfMatch.ImagePsfMatchTask.matchMaskedImages`,
144 `~lsst.ip.diffim.imagePsfMatch.ImagePsfMatchTask.subtractMaskedImages`,
145 `~lsst.ip.diffim.imagePsfMatch.ImagePsfMatchTask.matchExposures`, and
146 `~lsst.ip.diffim.imagePsfMatch.ImagePsfMatchTask.subtractExposures`.
148 The methods that operate on lsst.afw.image.MaskedImage require that the images already be astrometrically
149 aligned, and are the same shape. The methods that operate on lsst.afw.image.Exposure allow for the
150 input images to be misregistered and potentially be different sizes; by default a
151 lsst.afw.math.LanczosWarpingKernel is used to perform the astrometric alignment. The methods
152 that "match" images return a Psf-matched image, while the methods that "subtract" images
153 return a Psf-matched and template subtracted image.
155 See each method's returned lsst.pipe.base.Struct for more details.
159 The lsst.pipe.base.cmdLineTask.CmdLineTask command line task interface supports a
160 flag -d/--debug to import debug.py from your PYTHONPATH. The relevant contents of debug.py
161 for this Task include:
168 di = lsstDebug.getInfo(name)
169 if name == "lsst.ip.diffim.psfMatch":
170 di.display = True # enable debug output
171 di.maskTransparency = 80 # display mask transparency
172 di.displayCandidates = True # show all the candidates and residuals
173 di.displayKernelBasis = False # show kernel basis functions
174 di.displayKernelMosaic = True # show kernel realized across the image
175 di.plotKernelSpatialModel = False # show coefficients of spatial model
176 di.showBadCandidates = True # show the bad candidates (red) along with good (green)
177 elif name == "lsst.ip.diffim.imagePsfMatch":
178 di.display = True # enable debug output
179 di.maskTransparency = 30 # display mask transparency
180 di.displayTemplate = True # show full (remapped) template
181 di.displaySciIm = True # show science image to match to
182 di.displaySpatialCells = True # show spatial cells
183 di.displayDiffIm = True # show difference image
184 di.showBadCandidates = True # show the bad candidates (red) along with good (green)
185 elif name == "lsst.ip.diffim.diaCatalogSourceSelector":
186 di.display = False # enable debug output
187 di.maskTransparency = 30 # display mask transparency
188 di.displayExposure = True # show exposure with candidates indicated
189 di.pauseAtEnd = False # pause when done
191 lsstDebug.Info = DebugInfo
194 Note that if you want addional logging info, you may add to your scripts:
198 import lsst.log.utils as logUtils
199 logUtils.traceSetAt("ip.diffim", 4)
203 A complete example of using ImagePsfMatchTask
205 This code is imagePsfMatchTask.py in the examples directory, and can be run as e.g.
209 examples/imagePsfMatchTask.py --debug
210 examples/imagePsfMatchTask.py --debug --mode="matchExposures"
211 examples/imagePsfMatchTask.py --debug --template /path/to/templateExp.fits
212 --science /path/to/scienceExp.fits
214 Create a subclass of ImagePsfMatchTask that allows us to either match exposures, or subtract exposures:
218 class MyImagePsfMatchTask(ImagePsfMatchTask):
220 def __init__(self, args, kwargs):
221 ImagePsfMatchTask.__init__(self, args, kwargs)
223 def run(self, templateExp, scienceExp, mode):
224 if mode == "matchExposures":
225 return self.matchExposures(templateExp, scienceExp)
226 elif mode == "subtractExposures":
227 return self.subtractExposures(templateExp, scienceExp)
229 And allow the user the freedom to either run the script in default mode,
230 or point to their own images on disk.
231 Note that these images must be readable as an lsst.afw.image.Exposure.
233 We have enabled some minor display debugging in this script via the --debug option. However, if you
234 have an lsstDebug debug.py in your PYTHONPATH you will get additional debugging displays. The following
235 block checks for this script:
242 # Since I am displaying 2 images here, set the starting frame number for the LSST debug LSST
243 debug.lsstDebug.frame = 3
244 except ImportError as e:
245 print(e, file=sys.stderr)
247 Finally, we call a run method that we define below.
248 First set up a Config and modify some of the parameters.
249 E.g. use an "Alard-Lupton" sum-of-Gaussian basis,
250 fit for a differential background, and use low order spatial
251 variation in the kernel and background:
257 # Create the Config and use sum of gaussian basis
259 config = ImagePsfMatchTask.ConfigClass()
260 config.kernel.name = "AL"
261 config.kernel.active.fitForBackground = True
262 config.kernel.active.spatialKernelOrder = 1
263 config.kernel.active.spatialBgOrder = 0
265 Make sure the images (if any) that were sent to the script exist on disk and are readable. If no images
266 are sent, make some fake data up for the sake of this example script (have a look at the code if you want
267 more details on generateFakeImages):
271 # Run the requested method of the Task
272 if args.template is not None and args.science is not None:
273 if not os.path.isfile(args.template):
274 raise FileNotFoundError("Template image %s does not exist" % (args.template))
275 if not os.path.isfile(args.science):
276 raise FileNotFoundError("Science image %s does not exist" % (args.science))
278 templateExp = afwImage.ExposureF(args.template)
279 except Exception as e:
280 raise RuntimeError("Cannot read template image %s" % (args.template))
282 scienceExp = afwImage.ExposureF(args.science)
283 except Exception as e:
284 raise RuntimeError("Cannot read science image %s" % (args.science))
286 templateExp, scienceExp = generateFakeImages()
287 config.kernel.active.sizeCellX = 128
288 config.kernel.active.sizeCellY = 128
290 Create and run the Task:
295 psfMatchTask = MyImagePsfMatchTask(config=config)
297 result = psfMatchTask.run(templateExp, scienceExp, args.mode)
299 And finally provide some optional debugging displays:
304 # See if the LSST debug has incremented the frame number; if not start with frame 3
306 frame = debug.lsstDebug.frame + 1
309 afwDisplay.Display(frame=frame).mtv(result.matchedExposure,
310 title="Example script: Matched Template Image")
311 if "subtractedExposure" in result.getDict():
312 afwDisplay.Display(frame=frame + 1).mtv(result.subtractedExposure,
313 title="Example script: Subtracted Image")
316 ConfigClass = ImagePsfMatchConfig
319 """Create the ImagePsfMatchTask.
321 PsfMatchTask.__init__(self, *args, **kwargs)
323 self.
_warper = afwMath.Warper.fromConfig(self.
kConfig.warpingConfig)
330 self.makeSubtask(
"selectDetection", schema=self.
selectSchema)
334 """Return the FWHM in pixels of a Psf.
336 sigPix = psf.computeShape().getDeterminantRadius()
337 return sigPix*sigma2fwhm
341 templateFwhmPix=None, scienceFwhmPix=None,
342 candidateList=None, doWarping=True, convolveTemplate=True):
343 """Warp and PSF-match an exposure to the reference.
345 Do the following, in order:
347 - Warp templateExposure to match scienceExposure,
348 if doWarping True and their WCSs do not already match
349 - Determine a PSF matching kernel and differential background model
350 that matches templateExposure to scienceExposure
351 - Convolve templateExposure by PSF matching kernel
355 templateExposure : `lsst.afw.image.Exposure`
356 Exposure to warp and PSF-match to the reference masked image
357 scienceExposure : `lsst.afw.image.Exposure`
358 Exposure whose WCS and PSF are to be matched to
359 templateFwhmPix :`float`
360 FWHM (in pixels) of the Psf in the template image (image to convolve)
361 scienceFwhmPix : `float`
362 FWHM (in pixels) of the Psf in the science image
363 candidateList : `list`, optional
364 a list of footprints/maskedImages for kernel candidates;
365 if `None` then source detection is run.
367 - Currently supported: list of Footprints or measAlg.PsfCandidateF
370 what to do if ``templateExposure`` and ``scienceExposure`` WCSs do not match:
372 - if `True` then warp ``templateExposure`` to match ``scienceExposure``
373 - if `False` then raise an Exception
375 convolveTemplate : `bool`
376 Whether to convolve the template image or the science image:
378 - if `True`, ``templateExposure`` is warped if doWarping,
379 ``templateExposure`` is convolved
380 - if `False`, ``templateExposure`` is warped if doWarping,
381 ``scienceExposure`` is convolved
385 results : `lsst.pipe.base.Struct`
386 An `lsst.pipe.base.Struct` containing these fields:
388 - ``matchedImage`` : the PSF-matched exposure =
389 Warped ``templateExposure`` convolved by psfMatchingKernel. This has:
391 - the same parent bbox, Wcs and PhotoCalib as scienceExposure
392 - the same filter as templateExposure
393 - no Psf (because the PSF-matching process does not compute one)
395 - ``psfMatchingKernel`` : the PSF matching kernel
396 - ``backgroundModel`` : differential background model
397 - ``kernelCellSet`` : SpatialCellSet used to solve for the PSF matching kernel
402 Raised if doWarping is False and ``templateExposure`` and
403 ``scienceExposure`` WCSs do not match
405 if not self.
_validateWcs(templateExposure, scienceExposure):
407 self.log.
info(
"Astrometrically registering template to science image")
408 templatePsf = templateExposure.getPsf()
411 scienceExposure.getWcs())
412 psfWarped =
WarpedPsf(templatePsf, xyTransform)
415 destBBox=scienceExposure.getBBox())
416 templateExposure.setPsf(psfWarped)
418 self.log.
error(
"ERROR: Input images not registered")
419 raise RuntimeError(
"Input images not registered")
421 if templateFwhmPix
is None:
422 if not templateExposure.hasPsf():
423 self.log.
warn(
"No estimate of Psf FWHM for template image")
425 templateFwhmPix = self.
getFwhmPix(templateExposure.getPsf())
426 self.log.
info(
"templateFwhmPix: {}".
format(templateFwhmPix))
428 if scienceFwhmPix
is None:
429 if not scienceExposure.hasPsf():
430 self.log.
warn(
"No estimate of Psf FWHM for science image")
432 scienceFwhmPix = self.
getFwhmPix(scienceExposure.getPsf())
433 self.log.
info(
"scienceFwhmPix: {}".
format(scienceFwhmPix))
438 templateExposure, scienceExposure, kernelSize, candidateList)
440 templateExposure.getMaskedImage(), scienceExposure.getMaskedImage(), candidateList,
441 templateFwhmPix=templateFwhmPix, scienceFwhmPix=scienceFwhmPix)
445 templateExposure, scienceExposure, kernelSize, candidateList)
447 scienceExposure.getMaskedImage(), templateExposure.getMaskedImage(), candidateList,
448 templateFwhmPix=scienceFwhmPix, scienceFwhmPix=templateFwhmPix)
451 psfMatchedExposure.setFilter(templateExposure.getFilter())
452 psfMatchedExposure.setPhotoCalib(scienceExposure.getPhotoCalib())
453 results.warpedExposure = templateExposure
454 results.matchedExposure = psfMatchedExposure
459 templateFwhmPix=None, scienceFwhmPix=None):
460 """PSF-match a MaskedImage (templateMaskedImage) to a reference MaskedImage (scienceMaskedImage).
462 Do the following, in order:
464 - Determine a PSF matching kernel and differential background model
465 that matches templateMaskedImage to scienceMaskedImage
466 - Convolve templateMaskedImage by the PSF matching kernel
470 templateMaskedImage : `lsst.afw.image.MaskedImage`
471 masked image to PSF-match to the reference masked image;
472 must be warped to match the reference masked image
473 scienceMaskedImage : `lsst.afw.image.MaskedImage`
474 maskedImage whose PSF is to be matched to
475 templateFwhmPix : `float`
476 FWHM (in pixels) of the Psf in the template image (image to convolve)
477 scienceFwhmPix : `float`
478 FWHM (in pixels) of the Psf in the science image
479 candidateList : `list`, optional
480 A list of footprints/maskedImages for kernel candidates;
481 if `None` then source detection is run.
483 - Currently supported: list of Footprints or measAlg.PsfCandidateF
488 An `lsst.pipe.base.Struct` containing these fields:
490 - psfMatchedMaskedImage: the PSF-matched masked image =
491 ``templateMaskedImage`` convolved with psfMatchingKernel.
492 This has the same xy0, dimensions and wcs as ``scienceMaskedImage``.
493 - psfMatchingKernel: the PSF matching kernel
494 - backgroundModel: differential background model
495 - kernelCellSet: SpatialCellSet used to solve for the PSF matching kernel
500 Raised if input images have different dimensions
506 displaySpatialCells =
lsstDebug.Info(__name__).displaySpatialCells
508 if not maskTransparency:
511 afwDisplay.setDefaultMaskTransparency(maskTransparency)
513 if not candidateList:
514 raise RuntimeError(
"Candidate list must be populated by makeCandidateList")
516 if not self.
_validateSize(templateMaskedImage, scienceMaskedImage):
517 self.log.
error(
"ERROR: Input images different size")
518 raise RuntimeError(
"Input images different size")
520 if display
and displayTemplate:
521 disp = afwDisplay.Display(frame=lsstDebug.frame)
522 disp.mtv(templateMaskedImage, title=
"Image to convolve")
525 if display
and displaySciIm:
526 disp = afwDisplay.Display(frame=lsstDebug.frame)
527 disp.mtv(scienceMaskedImage, title=
"Image to not convolve")
534 if display
and displaySpatialCells:
535 diffimUtils.showKernelSpatialCells(scienceMaskedImage, kernelCellSet,
536 symb=
"o", ctype=afwDisplay.CYAN, ctypeUnused=afwDisplay.YELLOW,
537 ctypeBad=afwDisplay.RED, size=4, frame=lsstDebug.frame,
538 title=
"Image to not convolve")
541 if templateFwhmPix
and scienceFwhmPix:
542 self.log.
info(
"Matching Psf FWHM %.2f -> %.2f pix", templateFwhmPix, scienceFwhmPix)
544 if self.
kConfig.useBicForKernelBasis:
549 bicDegrees = nbe(tmpKernelCellSet, self.log)
551 alardDegGauss=bicDegrees[0], metadata=self.metadata)
555 metadata=self.metadata)
557 spatialSolution, psfMatchingKernel, backgroundModel = self.
_solve(kernelCellSet, basisList)
559 psfMatchedMaskedImage = afwImage.MaskedImageF(templateMaskedImage.getBBox())
561 convolutionControl.setDoNormalize(
False)
562 afwMath.convolve(psfMatchedMaskedImage, templateMaskedImage, psfMatchingKernel, convolutionControl)
563 return pipeBase.Struct(
564 matchedImage=psfMatchedMaskedImage,
565 psfMatchingKernel=psfMatchingKernel,
566 backgroundModel=backgroundModel,
567 kernelCellSet=kernelCellSet,
572 templateFwhmPix=None, scienceFwhmPix=None,
573 candidateList=None, doWarping=True, convolveTemplate=True):
574 """Register, Psf-match and subtract two Exposures.
576 Do the following, in order:
578 - Warp templateExposure to match scienceExposure, if their WCSs do not already match
579 - Determine a PSF matching kernel and differential background model
580 that matches templateExposure to scienceExposure
581 - PSF-match templateExposure to scienceExposure
582 - Compute subtracted exposure (see return values for equation).
586 templateExposure : `lsst.afw.image.Exposure`
587 Exposure to PSF-match to scienceExposure
588 scienceExposure : `lsst.afw.image.Exposure`
590 templateFwhmPix : `float`
591 FWHM (in pixels) of the Psf in the template image (image to convolve)
592 scienceFwhmPix : `float`
593 FWHM (in pixels) of the Psf in the science image
594 candidateList : `list`, optional
595 A list of footprints/maskedImages for kernel candidates;
596 if `None` then source detection is run.
598 - Currently supported: list of Footprints or measAlg.PsfCandidateF
601 What to do if ``templateExposure``` and ``scienceExposure`` WCSs do
604 - if `True` then warp ``templateExposure`` to match ``scienceExposure``
605 - if `False` then raise an Exception
607 convolveTemplate : `bool`
608 Convolve the template image or the science image
610 - if `True`, ``templateExposure`` is warped if doWarping,
611 ``templateExposure`` is convolved
612 - if `False`, ``templateExposure`` is warped if doWarping,
613 ``scienceExposure is`` convolved
617 result : `lsst.pipe.base.Struct`
618 An `lsst.pipe.base.Struct` containing these fields:
620 - ``subtractedExposure`` : subtracted Exposure
621 scienceExposure - (matchedImage + backgroundModel)
622 - ``matchedImage`` : ``templateExposure`` after warping to match
623 ``templateExposure`` (if doWarping true),
624 and convolving with psfMatchingKernel
625 - ``psfMatchingKernel`` : PSF matching kernel
626 - ``backgroundModel`` : differential background model
627 - ``kernelCellSet`` : SpatialCellSet used to determine PSF matching kernel
630 templateExposure=templateExposure,
631 scienceExposure=scienceExposure,
632 templateFwhmPix=templateFwhmPix,
633 scienceFwhmPix=scienceFwhmPix,
634 candidateList=candidateList,
636 convolveTemplate=convolveTemplate
639 subtractedExposure = afwImage.ExposureF(scienceExposure,
True)
641 subtractedMaskedImage = subtractedExposure.getMaskedImage()
642 subtractedMaskedImage -= results.matchedExposure.getMaskedImage()
643 subtractedMaskedImage -= results.backgroundModel
645 subtractedExposure.setMaskedImage(results.warpedExposure.getMaskedImage())
646 subtractedMaskedImage = subtractedExposure.getMaskedImage()
647 subtractedMaskedImage -= results.matchedExposure.getMaskedImage()
648 subtractedMaskedImage -= results.backgroundModel
651 subtractedMaskedImage *= -1
654 subtractedMaskedImage /= results.psfMatchingKernel.computeImage(
655 afwImage.ImageD(results.psfMatchingKernel.getDimensions()),
False)
661 if not maskTransparency:
664 afwDisplay.setDefaultMaskTransparency(maskTransparency)
665 if display
and displayDiffIm:
666 disp = afwDisplay.Display(frame=lsstDebug.frame)
667 disp.mtv(templateExposure, title=
"Template")
669 disp = afwDisplay.Display(frame=lsstDebug.frame)
670 disp.mtv(results.matchedExposure, title=
"Matched template")
672 disp = afwDisplay.Display(frame=lsstDebug.frame)
673 disp.mtv(scienceExposure, title=
"Science Image")
675 disp = afwDisplay.Display(frame=lsstDebug.frame)
676 disp.mtv(subtractedExposure, title=
"Difference Image")
679 results.subtractedExposure = subtractedExposure
684 templateFwhmPix=None, scienceFwhmPix=None):
685 """Psf-match and subtract two MaskedImages.
687 Do the following, in order:
689 - PSF-match templateMaskedImage to scienceMaskedImage
690 - Determine the differential background
691 - Return the difference: scienceMaskedImage
692 ((warped templateMaskedImage convolved with psfMatchingKernel) + backgroundModel)
696 templateMaskedImage : `lsst.afw.image.MaskedImage`
697 MaskedImage to PSF-match to ``scienceMaskedImage``
698 scienceMaskedImage : `lsst.afw.image.MaskedImage`
699 Reference MaskedImage
700 templateFwhmPix : `float`
701 FWHM (in pixels) of the Psf in the template image (image to convolve)
702 scienceFwhmPix : `float`
703 FWHM (in pixels) of the Psf in the science image
704 candidateList : `list`, optional
705 A list of footprints/maskedImages for kernel candidates;
706 if `None` then source detection is run.
708 - Currently supported: list of Footprints or measAlg.PsfCandidateF
712 results : `lsst.pipe.base.Struct`
713 An `lsst.pipe.base.Struct` containing these fields:
715 - ``subtractedMaskedImage`` : ``scienceMaskedImage`` - (matchedImage + backgroundModel)
716 - ``matchedImage`` : templateMaskedImage convolved with psfMatchingKernel
717 - `psfMatchingKernel`` : PSF matching kernel
718 - ``backgroundModel`` : differential background model
719 - ``kernelCellSet`` : SpatialCellSet used to determine PSF matching kernel
722 if not candidateList:
723 raise RuntimeError(
"Candidate list must be populated by makeCandidateList")
726 templateMaskedImage=templateMaskedImage,
727 scienceMaskedImage=scienceMaskedImage,
728 candidateList=candidateList,
729 templateFwhmPix=templateFwhmPix,
730 scienceFwhmPix=scienceFwhmPix,
733 subtractedMaskedImage = afwImage.MaskedImageF(scienceMaskedImage,
True)
734 subtractedMaskedImage -= results.matchedImage
735 subtractedMaskedImage -= results.backgroundModel
736 results.subtractedMaskedImage = subtractedMaskedImage
742 if not maskTransparency:
745 afwDisplay.setDefaultMaskTransparency(maskTransparency)
746 if display
and displayDiffIm:
747 disp = afwDisplay.Display(frame=lsstDebug.frame)
748 disp.mtv(subtractedMaskedImage, title=
"Subtracted masked image")
754 """Get sources to use for Psf-matching.
756 This method runs detection and measurement on an exposure.
757 The returned set of sources will be used as candidates for
762 exposure : `lsst.afw.image.Exposure`
763 Exposure on which to run detection/measurement
767 Whether or not to smooth the Exposure with Psf before detection
769 Factory for the generation of Source ids
774 source catalog containing candidates for the Psf-matching
777 table = afwTable.SourceTable.make(self.
selectSchema, idFactory)
780 mi = exposure.getMaskedImage()
782 imArr = mi.getImage().getArray()
783 maskArr = mi.getMask().getArray()
784 miArr = np.ma.masked_array(imArr, mask=maskArr)
787 bkgd = fitBg.getImageF(self.
background.config.algorithm,
790 self.log.
warn(
"Failed to get background model. Falling back to median background estimation")
791 bkgd = np.ma.extras.median(miArr)
797 detRet = self.selectDetection.
run(
803 selectSources = detRet.sources
804 self.selectMeasurement.
run(measCat=selectSources, exposure=exposure)
812 """Make a list of acceptable KernelCandidates.
814 Accept or generate a list of candidate sources for
815 Psf-matching, and examine the Mask planes in both of the
816 images for indications of bad pixels
820 templateExposure : `lsst.afw.image.Exposure`
821 Exposure that will be convolved
822 scienceExposure : `lsst.afw.image.Exposure`
823 Exposure that will be matched-to
825 Dimensions of the Psf-matching Kernel, used to grow detection footprints
826 candidateList : `list`, optional
827 List of Sources to examine. Elements must be of type afw.table.Source
828 or a type that wraps a Source and has a getSource() method, such as
829 meas.algorithms.PsfCandidateF.
833 candidateList : `list` of `dict`
834 A list of dicts having a "source" and "footprint"
835 field for the Sources deemed to be appropriate for Psf
838 if candidateList
is None:
841 if len(candidateList) < 1:
842 raise RuntimeError(
"No candidates in candidateList")
844 listTypes =
set(
type(x)
for x
in candidateList)
845 if len(listTypes) > 1:
846 raise RuntimeError(
"Candidate list contains mixed types: %s" % [l
for l
in listTypes])
850 candidateList[0].getSource()
851 except Exception
as e:
852 raise RuntimeError(f
"Candidate List is of type: {type(candidateList[0])} "
853 "Can only make candidate list from list of afwTable.SourceRecords, "
854 f
"measAlg.PsfCandidateF or other type with a getSource() method: {e}")
855 candidateList = [c.getSource()
for c
in candidateList]
857 candidateList = diffimTools.sourceToFootprintList(candidateList,
858 templateExposure, scienceExposure,
862 if len(candidateList) == 0:
863 raise RuntimeError(
"Cannot find any objects suitable for KernelCandidacy")
867 def _adaptCellSize(self, candidateList):
868 """NOT IMPLEMENTED YET.
872 def _buildCellSet(self, templateMaskedImage, scienceMaskedImage, candidateList):
873 """Build a SpatialCellSet for use with the solve method.
877 templateMaskedImage : `lsst.afw.image.MaskedImage`
878 MaskedImage to PSF-matched to scienceMaskedImage
879 scienceMaskedImage : `lsst.afw.image.MaskedImage`
880 Reference MaskedImage
881 candidateList : `list`
882 A list of footprints/maskedImages for kernel candidates;
884 - Currently supported: list of Footprints or measAlg.PsfCandidateF
888 kernelCellSet : `lsst.afw.math.SpatialCellSet`
889 a SpatialCellSet for use with self._solve
891 if not candidateList:
892 raise RuntimeError(
"Candidate list must be populated by makeCandidateList")
898 sizeCellX, sizeCellY)
900 ps = pexConfig.makePropertySet(self.
kConfig)
902 for cand
in candidateList:
904 bbox = cand.getBBox()
906 bbox = cand[
'footprint'].getBBox()
907 tmi = afwImage.MaskedImageF(templateMaskedImage, bbox)
908 smi = afwImage.MaskedImageF(scienceMaskedImage, bbox)
912 cand = cand[
'source']
913 xPos = cand.getCentroid()[0]
914 yPos = cand.getCentroid()[1]
915 cand = diffimLib.makeKernelCandidate(xPos, yPos, tmi, smi, ps)
917 self.log.
debug(
"Candidate %d at %f, %f", cand.getId(), cand.getXCenter(), cand.getYCenter())
918 kernelCellSet.insertCandidate(cand)
922 def _validateSize(self, templateMaskedImage, scienceMaskedImage):
923 """Return True if two image-like objects are the same size.
925 return templateMaskedImage.getDimensions() == scienceMaskedImage.getDimensions()
927 def _validateWcs(self, templateExposure, scienceExposure):
928 """Return True if the WCS of the two Exposures have the same origin and extent.
930 templateWcs = templateExposure.getWcs()
931 scienceWcs = scienceExposure.getWcs()
932 templateBBox = templateExposure.getBBox()
933 scienceBBox = scienceExposure.getBBox()
936 templateOrigin = templateWcs.pixelToSky(
geom.Point2D(templateBBox.getBegin()))
937 scienceOrigin = scienceWcs.pixelToSky(
geom.Point2D(scienceBBox.getBegin()))
940 templateLimit = templateWcs.pixelToSky(
geom.Point2D(templateBBox.getEnd()))
941 scienceLimit = scienceWcs.pixelToSky(
geom.Point2D(scienceBBox.getEnd()))
943 self.log.
info(
"Template Wcs : %f,%f -> %f,%f",
944 templateOrigin[0], templateOrigin[1],
945 templateLimit[0], templateLimit[1])
946 self.log.
info(
"Science Wcs : %f,%f -> %f,%f",
947 scienceOrigin[0], scienceOrigin[1],
948 scienceLimit[0], scienceLimit[1])
950 templateBBox =
geom.Box2D(templateOrigin.getPosition(geom.degrees),
951 templateLimit.getPosition(geom.degrees))
952 scienceBBox =
geom.Box2D(scienceOrigin.getPosition(geom.degrees),
953 scienceLimit.getPosition(geom.degrees))
954 if not (templateBBox.overlaps(scienceBBox)):
955 raise RuntimeError(
"Input images do not overlap at all")
957 if ((templateOrigin != scienceOrigin)
958 or (templateLimit != scienceLimit)
959 or (templateExposure.getDimensions() != scienceExposure.getDimensions())):
964 subtractAlgorithmRegistry = pexConfig.makeRegistry(
965 doc=
"A registry of subtraction algorithms for use as a subtask in imageDifference",
968 subtractAlgorithmRegistry.register(
'al', ImagePsfMatchTask)