LSST Applications  21.0.0+04719a4bac,21.0.0-1-ga51b5d4+f5e6047307,21.0.0-11-g2b59f77+a9c1acf22d,21.0.0-11-ga42c5b2+86977b0b17,21.0.0-12-gf4ce030+76814010d2,21.0.0-13-g1721dae+760e7a6536,21.0.0-13-g3a573fe+768d78a30a,21.0.0-15-g5a7caf0+f21cbc5713,21.0.0-16-g0fb55c1+b60e2d390c,21.0.0-19-g4cded4ca+71a93a33c0,21.0.0-2-g103fe59+bb20972958,21.0.0-2-g45278ab+04719a4bac,21.0.0-2-g5242d73+3ad5d60fb1,21.0.0-2-g7f82c8f+8babb168e8,21.0.0-2-g8f08a60+06509c8b61,21.0.0-2-g8faa9b5+616205b9df,21.0.0-2-ga326454+8babb168e8,21.0.0-2-gde069b7+5e4aea9c2f,21.0.0-2-gecfae73+1d3a86e577,21.0.0-2-gfc62afb+3ad5d60fb1,21.0.0-25-g1d57be3cd+e73869a214,21.0.0-3-g357aad2+ed88757d29,21.0.0-3-g4a4ce7f+3ad5d60fb1,21.0.0-3-g4be5c26+3ad5d60fb1,21.0.0-3-g65f322c+e0b24896a3,21.0.0-3-g7d9da8d+616205b9df,21.0.0-3-ge02ed75+a9c1acf22d,21.0.0-4-g591bb35+a9c1acf22d,21.0.0-4-g65b4814+b60e2d390c,21.0.0-4-gccdca77+0de219a2bc,21.0.0-4-ge8a399c+6c55c39e83,21.0.0-5-gd00fb1e+05fce91b99,21.0.0-6-gc675373+3ad5d60fb1,21.0.0-64-g1122c245+4fb2b8f86e,21.0.0-7-g04766d7+cd19d05db2,21.0.0-7-gdf92d54+04719a4bac,21.0.0-8-g5674e7b+d1bd76f71f,master-gac4afde19b+a9c1acf22d,w.2021.13
LSST Data Management Base Package
_gaussianProcess.cc
Go to the documentation of this file.
1 /*
2  * LSST Data Management System
3  * Copyright 2008-2016 AURA/LSST.
4  *
5  * This product includes software developed by the
6  * LSST Project (http://www.lsst.org/).
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the LSST License Statement and
19  * the GNU General Public License along with this program. If not,
20  * see <https://www.lsstcorp.org/LegalNotices/>.
21  */
22 
23 #include <pybind11/pybind11.h>
24 #include <lsst/utils/python.h>
25 
26 #include "ndarray/pybind11.h"
27 
29 
30 namespace py = pybind11;
31 
32 using namespace lsst::afw::math;
33 namespace lsst {
34 namespace afw {
35 namespace math {
36 namespace {
37 template <typename T>
38 void declareKdTree(lsst::utils::python::WrapperCollection &wrappers, const std::string &suffix) {
39  wrappers.wrapType(
40  py::class_<KdTree<T>>(wrappers.module, ("KdTree" + suffix).c_str()), [](auto &mod, auto &cls) {
41  cls.def(py::init<>());
42  cls.def("Initialize", &KdTree<T>::Initialize);
43  cls.def("removePoint", &KdTree<T>::removePoint);
44  cls.def("getData", (T(KdTree<T>::*)(int, int) const) & KdTree<T>::getData);
45  cls.def("getData", (ndarray::Array<T, 1, 1>(KdTree<T>::*)(int) const) & KdTree<T>::getData);
46  cls.def("addPoint", &KdTree<T>::addPoint);
47  cls.def("getNPoints", &KdTree<T>::getNPoints);
48  cls.def("getTreeNode", &KdTree<T>::getTreeNode);
49  cls.def("findNeighbors", &KdTree<T>::findNeighbors);
50  });
51 };
52 
53 template <typename T>
54 void declareCovariograms(lsst::utils::python::WrapperCollection &wrappers, const std::string &suffix) {
55  /* Covariogram */
56 
58  wrappers.module, ("Covariogram" + suffix).c_str()),
59  [](auto &mod, auto &cls) {
60  cls.def(py::init<>());
61  cls.def("__call__", &Covariogram<T>::operator());
62  });
63  /* SquaredExpCovariogram */
64  wrappers.wrapType(
66  wrappers.module, ("SquaredExpCovariogram" + suffix).c_str()),
67  [](auto &mod, auto &cls) {
68  cls.def(py::init<>());
69  cls.def("__call__", &SquaredExpCovariogram<T>::operator());
70  cls.def("setEllSquared", &SquaredExpCovariogram<T>::setEllSquared);
71  });
72  /* NeuralNetCovariogram */
73  wrappers.wrapType(
75  wrappers.module, ("NeuralNetCovariogram" + suffix).c_str()),
76  [](auto &mod, auto &cls) {
77  cls.def(py::init<>());
78  cls.def("setSigma0", &NeuralNetCovariogram<T>::setSigma0);
79  cls.def("setSigma1", &NeuralNetCovariogram<T>::setSigma1);
80  });
81 };
82 
83 template <typename T>
84 void declareGaussianProcess(lsst::utils::python::WrapperCollection &wrappers, const std::string &suffix) {
85  wrappers.wrapType(
86  py::class_<GaussianProcess<T>>(wrappers.module, ("GaussianProcess" + suffix).c_str()),
87  [](auto &mod, auto &cls) {
88  /* Constructors */
89  cls.def(py::init<ndarray::Array<T, 2, 2> const &, ndarray::Array<T, 1, 1> const &,
90  std::shared_ptr<Covariogram<T>> const &>());
91  cls.def(py::init<ndarray::Array<T, 2, 2> const &, ndarray::Array<T, 1, 1> const &,
92  ndarray::Array<T, 1, 1> const &, ndarray::Array<T, 1, 1> const &,
93  std::shared_ptr<Covariogram<T>> const &>());
94  cls.def(py::init<ndarray::Array<T, 2, 2> const &, ndarray::Array<T, 2, 2> const &,
95  std::shared_ptr<Covariogram<T>> const &>());
96  cls.def(py::init<ndarray::Array<T, 2, 2> const &, ndarray::Array<T, 1, 1> const &,
97  ndarray::Array<T, 1, 1> const &, ndarray::Array<T, 2, 2> const &,
98  std::shared_ptr<Covariogram<T>> const &>());
99  /* Members */
100  cls.def("interpolate",
101  (T(GaussianProcess<T>::*)(ndarray::Array<T, 1, 1>, ndarray::Array<T, 1, 1> const &,
102  int) const) &
103  GaussianProcess<T>::interpolate);
104  cls.def("interpolate",
105  (void (GaussianProcess<T>::*)(ndarray::Array<T, 1, 1>, ndarray::Array<T, 1, 1>,
106  ndarray::Array<T, 1, 1> const &, int) const) &
107  GaussianProcess<T>::interpolate);
108  cls.def("selfInterpolate",
109  (T(GaussianProcess<T>::*)(ndarray::Array<T, 1, 1>, int, int) const) &
110  GaussianProcess<T>::selfInterpolate);
111  cls.def("selfInterpolate",
112  (void (GaussianProcess<T>::*)(ndarray::Array<T, 1, 1>, ndarray::Array<T, 1, 1>, int,
113  int) const) &
114  GaussianProcess<T>::selfInterpolate);
115  cls.def("setLambda", &GaussianProcess<T>::setLambda);
116  cls.def("setCovariogram", &GaussianProcess<T>::setCovariogram);
117  cls.def("addPoint", (void (GaussianProcess<T>::*)(ndarray::Array<T, 1, 1> const &, T)) &
118  GaussianProcess<T>::addPoint);
119  cls.def("addPoint", (void (GaussianProcess<T>::*)(ndarray::Array<T, 1, 1> const &,
120  ndarray::Array<T, 1, 1> const &)) &
121  GaussianProcess<T>::addPoint);
122  cls.def("batchInterpolate",
123  (void (GaussianProcess<T>::*)(ndarray::Array<T, 1, 1>, ndarray::Array<T, 1, 1>,
124  ndarray::Array<T, 2, 2> const &) const) &
125  GaussianProcess<T>::batchInterpolate);
126  cls.def("batchInterpolate",
127  (void (GaussianProcess<T>::*)(ndarray::Array<T, 1, 1>,
128  ndarray::Array<T, 2, 2> const &) const) &
129  GaussianProcess<T>::batchInterpolate);
130  cls.def("batchInterpolate",
131  (void (GaussianProcess<T>::*)(ndarray::Array<T, 2, 2>, ndarray::Array<T, 2, 2>,
132  ndarray::Array<T, 2, 2> const &) const) &
133  GaussianProcess<T>::batchInterpolate);
134  cls.def("batchInterpolate",
135  (void (GaussianProcess<T>::*)(ndarray::Array<T, 2, 2>,
136  ndarray::Array<T, 2, 2> const &) const) &
137  GaussianProcess<T>::batchInterpolate);
138  cls.def("setKrigingParameter", &GaussianProcess<T>::setKrigingParameter);
139  cls.def("removePoint", &GaussianProcess<T>::removePoint);
140  cls.def("getNPoints", &GaussianProcess<T>::getNPoints);
141  cls.def("getData",
142  (void (GaussianProcess<T>::*)(ndarray::Array<T, 2, 2>, ndarray::Array<T, 1, 1>,
143  ndarray::Array<int, 1, 1>) const) &
144  GaussianProcess<T>::getData);
145  cls.def("getData",
146  (void (GaussianProcess<T>::*)(ndarray::Array<T, 2, 2>, ndarray::Array<T, 2, 2>,
147  ndarray::Array<int, 1, 1>) const) &
148  GaussianProcess<T>::getData);
149  });
150 };
151 } // namespace
152 
154  declareCovariograms<double>(wrappers, "D");
155  declareGaussianProcess<double>(wrappers, "D");
156  declareKdTree<double>(wrappers, "D");
157 }
158 } // namespace math
159 } // namespace afw
160 } // namespace lsst
The parent class of covariogram functions for use in Gaussian Process interpolation.
Stores values of a function sampled on an image and allows you to interpolate the function to unsampl...
The data for GaussianProcess is stored in a KD tree to facilitate nearest-neighbor searches.
a Covariogram that recreates a neural network with one hidden layer and infinite units in that layer
A helper class for subdividing pybind11 module across multiple translation units (i....
Definition: python.h:242
pybind11::module module
The module object passed to the PYBIND11_MODULE block that contains this WrapperCollection.
Definition: python.h:448
PyType wrapType(PyType cls, ClassWrapperCallback function, bool setModuleName=true)
Add a type (class or enum) wrapper, deferring method and other attribute definitions until finish() i...
Definition: python.h:391
void wrapGaussianProcess(lsst::utils::python::WrapperCollection &wrappers)
A base class for image defects.