LSST Applications  21.0.0+04719a4bac,21.0.0-1-ga51b5d4+f5e6047307,21.0.0-11-g2b59f77+a9c1acf22d,21.0.0-11-ga42c5b2+86977b0b17,21.0.0-12-gf4ce030+76814010d2,21.0.0-13-g1721dae+760e7a6536,21.0.0-13-g3a573fe+768d78a30a,21.0.0-15-g5a7caf0+f21cbc5713,21.0.0-16-g0fb55c1+b60e2d390c,21.0.0-19-g4cded4ca+71a93a33c0,21.0.0-2-g103fe59+bb20972958,21.0.0-2-g45278ab+04719a4bac,21.0.0-2-g5242d73+3ad5d60fb1,21.0.0-2-g7f82c8f+8babb168e8,21.0.0-2-g8f08a60+06509c8b61,21.0.0-2-g8faa9b5+616205b9df,21.0.0-2-ga326454+8babb168e8,21.0.0-2-gde069b7+5e4aea9c2f,21.0.0-2-gecfae73+1d3a86e577,21.0.0-2-gfc62afb+3ad5d60fb1,21.0.0-25-g1d57be3cd+e73869a214,21.0.0-3-g357aad2+ed88757d29,21.0.0-3-g4a4ce7f+3ad5d60fb1,21.0.0-3-g4be5c26+3ad5d60fb1,21.0.0-3-g65f322c+e0b24896a3,21.0.0-3-g7d9da8d+616205b9df,21.0.0-3-ge02ed75+a9c1acf22d,21.0.0-4-g591bb35+a9c1acf22d,21.0.0-4-g65b4814+b60e2d390c,21.0.0-4-gccdca77+0de219a2bc,21.0.0-4-ge8a399c+6c55c39e83,21.0.0-5-gd00fb1e+05fce91b99,21.0.0-6-gc675373+3ad5d60fb1,21.0.0-64-g1122c245+4fb2b8f86e,21.0.0-7-g04766d7+cd19d05db2,21.0.0-7-gdf92d54+04719a4bac,21.0.0-8-g5674e7b+d1bd76f71f,master-gac4afde19b+a9c1acf22d,w.2021.13
LSST Data Management Base Package
PolynomialTransform.h
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 
3 /*
4  * LSST Data Management System
5  * Copyright 2016 LSST/AURA
6  *
7  * This product includes software developed by the
8  * LSST Project (http://www.lsst.org/).
9  *
10  * This program is free software: you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, either version 3 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the LSST License Statement and
21  * the GNU General Public License along with this program. If not,
22  * see <http://www.lsstcorp.org/LegalNotices/>.
23  */
24 #ifndef LSST_MEAS_ASTROM_PolynomialTransform_INCLUDED
25 #define LSST_MEAS_ASTROM_PolynomialTransform_INCLUDED
26 
27 #include "ndarray/eigen.h"
28 #include "lsst/geom/Point.h"
30 
31 namespace lsst {
32 namespace meas {
33 namespace astrom {
34 
35 class SipForwardTransform;
36 class SipReverseTransform;
37 class ScaledPolynomialTransform;
38 
46 public:
51 
56 
61 
72  PolynomialTransform(ndarray::Array<double const, 2, 0> const& xCoeffs,
73  ndarray::Array<double const, 2, 0> const& yCoeffs);
74 
81 
88 
95 
102 
105 
107  int getOrder() const { return _xCoeffs.getSize<0>() - 1; }
108 
115  ndarray::Array<double const, 2, 2> getXCoeffs() const { return _xCoeffs.shallow(); }
116 
123  ndarray::Array<double const, 2, 2> getYCoeffs() const { return _yCoeffs.shallow(); }
124 
129 
133  geom::Point2D operator()(geom::Point2D const& in) const;
134 
135 private:
136  PolynomialTransform(int order);
137 
141  friend class SipForwardTransform;
142  friend class SipReverseTransform;
144 
145  ndarray::Array<double, 2, 2> _xCoeffs;
146  ndarray::Array<double, 2, 2> _yCoeffs;
147  mutable Eigen::VectorXd _u; // workspace for operator() and linearize
148  mutable Eigen::VectorXd _v;
149 };
150 
158 public:
166 
174  static ScaledPolynomialTransform convert(SipForwardTransform const& sipForward);
175 
183  static ScaledPolynomialTransform convert(SipReverseTransform const& sipReverse);
184 
196  geom::AffineTransform const& outputScalingInverse);
197 
199 
201 
203 
205 
207 
209  PolynomialTransform const& getPoly() const { return _poly; }
210 
212  geom::AffineTransform const& getInputScaling() const { return _inputScaling; }
213 
215  geom::AffineTransform const& getOutputScalingInverse() const { return _outputScalingInverse; }
216 
221 
225  geom::Point2D operator()(geom::Point2D const& in) const;
226 
227 private:
229  PolynomialTransform _poly;
230  geom::AffineTransform _inputScaling;
231  geom::AffineTransform _outputScalingInverse;
232 };
233 
241 
249 
250 } // namespace astrom
251 } // namespace meas
252 } // namespace lsst
253 
254 #endif // !LSST_MEAS_ASTROM_PolynomialTransform_INCLUDED
ItemVariant const * other
Definition: Schema.cc:56
An affine coordinate transformation consisting of a linear transformation and an offset.
A 2-d coordinate transform represented by a pair of standard polynomials (one for each coordinate).
geom::Point2D operator()(geom::Point2D const &in) const
Apply the transform to a point.
PolynomialTransform & operator=(PolynomialTransform const &other)
Copy assignment.
friend PolynomialTransform compose(geom::AffineTransform const &t1, PolynomialTransform const &t2)
Return a PolynomialTransform that is equivalent to the composition t1(t2())
static PolynomialTransform convert(ScaledPolynomialTransform const &other)
Convert a ScaledPolynomialTransform to an equivalent PolynomialTransform.
geom::AffineTransform linearize(geom::Point2D const &in) const
Return an approximate affine transform at the given point.
PolynomialTransform(ndarray::Array< double const, 2, 0 > const &xCoeffs, ndarray::Array< double const, 2, 0 > const &yCoeffs)
Construct a new transform from existing coefficient arrays.
ndarray::Array< double const, 2, 2 > getYCoeffs() const
2-D polynomial coefficients that compute the output x coordinate.
void swap(PolynomialTransform &other)
Lightweight swap.
ndarray::Array< double const, 2, 2 > getXCoeffs() const
2-D polynomial coefficients that compute the output x coordinate.
int getOrder() const
Return the order of the polynomials.
A fitter class for scaled polynomial transforms.
A 2-d coordinate transform represented by a lazy composition of an AffineTransform,...
ScaledPolynomialTransform(ScaledPolynomialTransform &&other)=default
ScaledPolynomialTransform & operator=(ScaledPolynomialTransform &&other)=default
ScaledPolynomialTransform & operator=(ScaledPolynomialTransform const &other)=default
ScaledPolynomialTransform(ScaledPolynomialTransform const &other)=default
geom::AffineTransform linearize(geom::Point2D const &in) const
Return an approximate affine transform at the given point.
geom::AffineTransform const & getOutputScalingInverse() const
Return the affine transform applied to points after the polynomial transform.
geom::Point2D operator()(geom::Point2D const &in) const
Apply the transform to a point.
void swap(ScaledPolynomialTransform &other)
static ScaledPolynomialTransform convert(PolynomialTransform const &poly)
Convert a PolynomialTransform to an equivalent ScaledPolynomialTransform.
geom::AffineTransform const & getInputScaling() const
Return the first affine transform applied to input points.
PolynomialTransform const & getPoly() const
Return the polynomial transform applied after the input scaling.
ScaledPolynomialTransform(PolynomialTransform const &poly, geom::AffineTransform const &inputScaling, geom::AffineTransform const &outputScalingInverse)
Construct a new ScaledPolynomialTransform from its constituents.
A transform that maps pixel coordinates to intermediate world coordinates according to the SIP conven...
Definition: SipTransform.h:136
A transform that maps intermediate world coordinates to pixel coordinates according to the SIP conven...
Definition: SipTransform.h:246
Low-level polynomials (including special polynomials) in C++.
Definition: Basis1d.h:26
PolynomialTransform compose(geom::AffineTransform const &t1, PolynomialTransform const &t2)
Return a PolynomialTransform that is equivalent to the composition t1(t2())
A base class for image defects.