LSST Applications  21.0.0+04719a4bac,21.0.0-1-ga51b5d4+f5e6047307,21.0.0-11-g2b59f77+a9c1acf22d,21.0.0-11-ga42c5b2+86977b0b17,21.0.0-12-gf4ce030+76814010d2,21.0.0-13-g1721dae+760e7a6536,21.0.0-13-g3a573fe+768d78a30a,21.0.0-15-g5a7caf0+f21cbc5713,21.0.0-16-g0fb55c1+b60e2d390c,21.0.0-19-g4cded4ca+71a93a33c0,21.0.0-2-g103fe59+bb20972958,21.0.0-2-g45278ab+04719a4bac,21.0.0-2-g5242d73+3ad5d60fb1,21.0.0-2-g7f82c8f+8babb168e8,21.0.0-2-g8f08a60+06509c8b61,21.0.0-2-g8faa9b5+616205b9df,21.0.0-2-ga326454+8babb168e8,21.0.0-2-gde069b7+5e4aea9c2f,21.0.0-2-gecfae73+1d3a86e577,21.0.0-2-gfc62afb+3ad5d60fb1,21.0.0-25-g1d57be3cd+e73869a214,21.0.0-3-g357aad2+ed88757d29,21.0.0-3-g4a4ce7f+3ad5d60fb1,21.0.0-3-g4be5c26+3ad5d60fb1,21.0.0-3-g65f322c+e0b24896a3,21.0.0-3-g7d9da8d+616205b9df,21.0.0-3-ge02ed75+a9c1acf22d,21.0.0-4-g591bb35+a9c1acf22d,21.0.0-4-g65b4814+b60e2d390c,21.0.0-4-gccdca77+0de219a2bc,21.0.0-4-ge8a399c+6c55c39e83,21.0.0-5-gd00fb1e+05fce91b99,21.0.0-6-gc675373+3ad5d60fb1,21.0.0-64-g1122c245+4fb2b8f86e,21.0.0-7-g04766d7+cd19d05db2,21.0.0-7-gdf92d54+04719a4bac,21.0.0-8-g5674e7b+d1bd76f71f,master-gac4afde19b+a9c1acf22d,w.2021.13
LSST Data Management Base Package
astierCovPtcUtils.py
Go to the documentation of this file.
1 # This file is part of cp_pipe.
2 #
3 # Developed for the LSST Data Management System.
4 # This product includes software developed by the LSST Project
5 # (https://www.lsst.org).
6 # See the COPYRIGHT file at the top-level directory of this distribution
7 # for details of code ownership.
8 #
9 # This program is free software: you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation, either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <https://www.gnu.org/licenses/>.
21 
22 import numpy as np
23 from .astierCovPtcFit import CovFit
24 
25 __all__ = ['CovFastFourierTransform']
26 
27 
29  """A class to compute (via FFT) the nearby pixels correlation function.
30 
31  Implements appendix of Astier+19.
32 
33  Parameters
34  ----------
35  diff: `numpy.array`
36  Image where to calculate the covariances (e.g., the difference image of two flats).
37 
38  w: `numpy.array`
39  Weight image (mask): it should consist of 1's (good pixel) and 0's (bad pixels).
40 
41  fftShape: `tuple`
42  2d-tuple with the shape of the FFT
43 
44  maxRangeCov: `int`
45  Maximum range for the covariances.
46  """
47 
48  def __init__(self, diff, w, fftShape, maxRangeCov):
49  # check that the zero padding implied by "fft_shape"
50  # is large enough for the required correlation range
51  assert(fftShape[0] > diff.shape[0]+maxRangeCov+1)
52  assert(fftShape[1] > diff.shape[1]+maxRangeCov+1)
53  # for some reason related to numpy.fft.rfftn,
54  # the second dimension should be even, so
55  if fftShape[1]%2 == 1:
56  fftShape = (fftShape[0], fftShape[1]+1)
57  tIm = np.fft.rfft2(diff*w, fftShape)
58  tMask = np.fft.rfft2(w, fftShape)
59  # sum of "squares"
60  self.pCovpCov = np.fft.irfft2(tIm*tIm.conjugate())
61  # sum of values
62  self.pMeanpMean = np.fft.irfft2(tIm*tMask.conjugate())
63  # number of w!=0 pixels.
64  self.pCountpCount = np.fft.irfft2(tMask*tMask.conjugate())
65 
66  def cov(self, dx, dy):
67  """Covariance for dx,dy averaged with dx,-dy if both non zero.
68 
69  Implements appendix of Astier+19.
70 
71  Parameters
72  ----------
73  dx: `int`
74  Lag in x
75 
76  dy: `int
77  Lag in y
78 
79  Returns
80  -------
81  0.5*(cov1+cov2): `float`
82  Covariance at (dx, dy) lag
83 
84  npix1+npix2: `int`
85  Number of pixels used in covariance calculation.
86  """
87  # compensate rounding errors
88  nPix1 = int(round(self.pCountpCount[dy, dx]))
89  cov1 = self.pCovpCov[dy, dx]/nPix1-self.pMeanpMean[dy, dx]*self.pMeanpMean[-dy, -dx]/(nPix1*nPix1)
90  if (dx == 0 or dy == 0):
91  return cov1, nPix1
92  nPix2 = int(round(self.pCountpCount[-dy, dx]))
93  cov2 = self.pCovpCov[-dy, dx]/nPix2-self.pMeanpMean[-dy, dx]*self.pMeanpMean[dy, -dx]/(nPix2*nPix2)
94  return 0.5*(cov1+cov2), nPix1+nPix2
95 
96  def reportCovFastFourierTransform(self, maxRange):
97  """Produce a list of tuples with covariances.
98 
99  Implements appendix of Astier+19.
100 
101  Parameters
102  ----------
103  maxRange: `int`
104  Maximum range of covariances.
105 
106  Returns
107  -------
108  tupleVec: `list`
109  List with covariance tuples.
110  """
111  tupleVec = []
112  # (dy,dx) = (0,0) has to be first
113  for dy in range(maxRange+1):
114  for dx in range(maxRange+1):
115  cov, npix = self.covcov(dx, dy)
116  if (dx == 0 and dy == 0):
117  var = cov
118  tupleVec.append((dx, dy, var, cov, npix))
119  return tupleVec
120 
121 
122 def computeCovDirect(diffImage, weightImage, maxRange):
123  """Compute covariances of diffImage in real space.
124 
125  For lags larger than ~25, it is slower than the FFT way.
126  Taken from https://github.com/PierreAstier/bfptc/
127 
128  Parameters
129  ----------
130  diffImage : `numpy.array`
131  Image to compute the covariance of.
132 
133  weightImage : `numpy.array`
134  Weight image of diffImage (1's and 0's for good and bad pixels, respectively).
135 
136  maxRange : `int`
137  Last index of the covariance to be computed.
138 
139  Returns
140  -------
141  outList : `list`
142  List with tuples of the form (dx, dy, var, cov, npix), where:
143  dx : `int`
144  Lag in x
145  dy : `int`
146  Lag in y
147  var : `float`
148  Variance at (dx, dy).
149  cov : `float`
150  Covariance at (dx, dy).
151  nPix : `int`
152  Number of pixel pairs used to evaluate var and cov.
153  """
154  outList = []
155  var = 0
156  # (dy,dx) = (0,0) has to be first
157  for dy in range(maxRange + 1):
158  for dx in range(0, maxRange + 1):
159  if (dx*dy > 0):
160  cov1, nPix1 = covDirectValue(diffImage, weightImage, dx, dy)
161  cov2, nPix2 = covDirectValue(diffImage, weightImage, dx, -dy)
162  cov = 0.5*(cov1 + cov2)
163  nPix = nPix1 + nPix2
164  else:
165  cov, nPix = covDirectValue(diffImage, weightImage, dx, dy)
166  if (dx == 0 and dy == 0):
167  var = cov
168  outList.append((dx, dy, var, cov, nPix))
169 
170  return outList
171 
172 
173 def covDirectValue(diffImage, weightImage, dx, dy):
174  """Compute covariances of diffImage in real space at lag (dx, dy).
175 
176  Taken from https://github.com/PierreAstier/bfptc/ (c.f., appendix of Astier+19).
177 
178  Parameters
179  ----------
180  diffImage : `numpy.array`
181  Image to compute the covariance of.
182 
183  weightImage : `numpy.array`
184  Weight image of diffImage (1's and 0's for good and bad pixels, respectively).
185 
186  dx : `int`
187  Lag in x.
188 
189  dy : `int`
190  Lag in y.
191 
192  Returns
193  -------
194  cov : `float`
195  Covariance at (dx, dy)
196 
197  nPix : `int`
198  Number of pixel pairs used to evaluate var and cov.
199  """
200  (nCols, nRows) = diffImage.shape
201  # switching both signs does not change anything:
202  # it just swaps im1 and im2 below
203  if (dx < 0):
204  (dx, dy) = (-dx, -dy)
205  # now, we have dx >0. We have to distinguish two cases
206  # depending on the sign of dy
207  if dy >= 0:
208  im1 = diffImage[dy:, dx:]
209  w1 = weightImage[dy:, dx:]
210  im2 = diffImage[:nCols - dy, :nRows - dx]
211  w2 = weightImage[:nCols - dy, :nRows - dx]
212  else:
213  im1 = diffImage[:nCols + dy, dx:]
214  w1 = weightImage[:nCols + dy, dx:]
215  im2 = diffImage[-dy:, :nRows - dx]
216  w2 = weightImage[-dy:, :nRows - dx]
217  # use the same mask for all 3 calculations
218  wAll = w1*w2
219  # do not use mean() because weightImage=0 pixels would then count
220  nPix = wAll.sum()
221  im1TimesW = im1*wAll
222  s1 = im1TimesW.sum()/nPix
223  s2 = (im2*wAll).sum()/nPix
224  p = (im1TimesW*im2).sum()/nPix
225  cov = p - s1*s2
226 
227  return cov, nPix
228 
229 
230 def parseData(dataset):
231  """ Returns a list of CovFit objects, indexed by amp number.
232 
233  Params
234  ------
235  dataset : `lsst.ip.isr.ptcDataset.PhotonTransferCurveDataset`
236  The PTC dataset containing the means, variances, and
237  exposure times.
238 
239  Returns
240  -------
241  covFitDict: `dict`
242  Dictionary with amps as keys, and CovFit objects as values.
243  """
244 
245  covFitDict = {}
246  for ampName in dataset.ampNames:
247  # If there is a bad amp, don't fit it
248  if ampName in dataset.badAmps:
249  continue
250  maskAtAmp = dataset.expIdMask[ampName]
251  muAtAmp = dataset.rawMeans[ampName]
252  covAtAmp = dataset.covariances[ampName]
253  covSqrtWeightsAtAmp = dataset.covariancesSqrtWeights[ampName]
254 
255  c = CovFit(muAtAmp, covAtAmp, covSqrtWeightsAtAmp, dataset.covMatrixSide, maskAtAmp)
256  cc = c.copy()
257  cc.initFit() # allows to get a crude gain.
258  covFitDict[ampName] = cc
259 
260  return covFitDict
261 
262 
264  """Fit data to model in Astier+19 (Eq. 20).
265 
266  Parameters
267  ----------
268  dataset : `lsst.ip.isr.ptcDataset.PhotonTransferCurveDataset`
269  The dataset containing the means, (co)variances, and exposure times.
270 
271  Returns
272  -------
273  covFitDict: `dict`
274  Dictionary of CovFit objects, with amp names as keys.
275 
276  covFitNoBDict: `dict`
277  Dictionary of CovFit objects, with amp names as keys (b=0 in Eq. 20 of Astier+19).
278 
279  Notes
280  -----
281  The parameters of the full model for C_ij(mu) ("C_ij" and "mu" in ADU^2 and ADU, respectively)
282  in Astier+19 (Eq. 20) are:
283 
284  "a" coefficients (r by r matrix), units: 1/e
285  "b" coefficients (r by r matrix), units: 1/e
286  noise matrix (r by r matrix), units: e^2
287  gain, units: e/ADU
288 
289  "b" appears in Eq. 20 only through the "ab" combination, which is defined in this code as "c=ab".
290  """
291 
292  covFitDict = parseData(dataset)
293  covFitNoBDict = {}
294  for ext, c in covFitDict.items():
295  c.fitFullModel()
296  covFitNoBDict[ext] = c.copy()
297  c.params['c'].release()
298  c.fitFullModel()
299  return covFitDict, covFitNoBDict
300 
301 
302 def getFitDataFromCovariances(i, j, mu, fullCov, fullCovModel, fullCovSqrtWeights, gain=1.0,
303  divideByMu=False, returnMasked=False):
304  """Get measured signal and covariance, cov model, weigths, and mask at covariance lag (i, j).
305 
306  Parameters
307  ----------
308  i : `int`
309  Lag for covariance matrix.
310 
311  j: `int`
312  Lag for covariance matrix.
313 
314  mu : `list`
315  Mean signal values.
316 
317  fullCov: `list` of `numpy.array`
318  Measured covariance matrices at each mean signal level in mu.
319 
320  fullCovSqrtWeights: `list` of `numpy.array`
321  List of square root of measured covariances at each mean signal level in mu.
322 
323  fullCovModel : `list` of `numpy.array`
324  List of modeled covariances at each mean signal level in mu.
325 
326  gain : `float`, optional
327  Gain, in e-/ADU. If other than 1.0 (default), the returned quantities will be in
328  electrons or powers of electrons.
329 
330  divideByMu: `bool`, optional
331  Divide returned covariance, model, and weights by the mean signal mu?
332 
333  returnMasked : `bool`, optional
334  Use mask (based on weights) in returned arrays (mu, covariance, and model)?
335 
336  Returns
337  -------
338  mu : `numpy.array`
339  list of signal values at (i, j).
340 
341  covariance : `numpy.array`
342  Covariance at (i, j) at each mean signal mu value (fullCov[:, i, j]).
343 
344  covarianceModel : `numpy.array`
345  Covariance model at (i, j).
346 
347  weights : `numpy.array`
348  Weights at (i, j).
349 
350  maskFromWeights : `numpy.array`, optional
351  Boolean mask of the covariance at (i,j), where the weights differ from 0.
352 
353  Notes
354  -----
355  This function is a method of the `CovFit` class.
356  """
357  mu = np.array(mu)
358  fullCov = np.array(fullCov)
359  fullCovModel = np.array(fullCovModel)
360  fullCovSqrtWeights = np.array(fullCovSqrtWeights)
361  covariance = fullCov[:, i, j]*(gain**2)
362  covarianceModel = fullCovModel[:, i, j]*(gain**2)
363  weights = fullCovSqrtWeights[:, i, j]/(gain**2)
364 
365  maskFromWeights = weights != 0
366  if returnMasked:
367  weights = weights[maskFromWeights]
368  covarianceModel = covarianceModel[maskFromWeights]
369  mu = mu[maskFromWeights]
370  covariance = covariance[maskFromWeights]
371 
372  if divideByMu:
373  covariance /= mu
374  covarianceModel /= mu
375  weights *= mu
376  return mu, covariance, covarianceModel, weights, maskFromWeights
def __init__(self, diff, w, fftShape, maxRangeCov)
def getFitDataFromCovariances(i, j, mu, fullCov, fullCovModel, fullCovSqrtWeights, gain=1.0, divideByMu=False, returnMasked=False)
def computeCovDirect(diffImage, weightImage, maxRange)
def covDirectValue(diffImage, weightImage, dx, dy)