22 """Module defining a butler like object specialized to a specific quantum.
25 __all__ = (
"ButlerQuantumContext",)
30 from .connections
import InputQuantizedConnection, OutputQuantizedConnection, DeferredDatasetRef
31 from .struct
import Struct
32 from lsst.daf.butler
import DatasetRef, Butler, Quantum
36 """A Butler-like class specialized for a single quantum
38 A ButlerQuantumContext class wraps a standard butler interface and
39 specializes it to the context of a given quantum. What this means
40 in practice is that the only gets and puts that this class allows
41 are DatasetRefs that are contained in the quantum.
43 In the future this class will also be used to record provenance on
44 what was actually get and put. This is in contrast to what the
45 preflight expects to be get and put by looking at the graph before
50 butler : `lsst.daf.butler.Butler`
51 Butler object from/to which datasets will be get/put
52 quantum : `lsst.daf.butler.core.Quantum`
53 Quantum object that describes the datasets which will be get/put by a
54 single execution of this node in the pipeline graph. All input
55 dataset references must be resolved (i.e. satisfy
56 ``DatasetRef.id is not None``) prior to constructing the
57 `ButlerQuantumContext`.
61 Most quanta in any non-trivial graph will not start with resolved dataset
62 references, because they represent processing steps that can only run
63 after some other quanta have produced their inputs. At present, it is the
64 responsibility of ``lsst.ctrl.mpexec.SingleQuantumExecutor`` to resolve all
65 datasets prior to constructing `ButlerQuantumContext` and calling
66 `runQuantum`, and the fact that this precondition is satisfied by code in
67 a downstream package is considered a problem with the
68 ``pipe_base/ctrl_mpexec`` separation of concerns that will be addressed in
71 def __init__(self, butler: Butler, quantum: Quantum):
76 for refs
in quantum.inputs.values():
78 self.
allInputsallInputs.add((ref.datasetType, ref.dataId))
79 for refs
in quantum.outputs.values():
81 self.
allOutputsallOutputs.add((ref.datasetType, ref.dataId))
88 if isinstance(ref, DeferredDatasetRef):
90 return butler.getDirectDeferred(ref.datasetRef)
94 return butler.getDirect(ref)
96 def _put(self, value, ref):
98 butler.put(value, ref)
100 self.
_get_get = types.MethodType(_get, self)
101 self.
_put_put = types.MethodType(_put, self)
103 def get(self, dataset: typing.Union[InputQuantizedConnection,
104 typing.List[DatasetRef],
105 DatasetRef]) -> object:
106 """Fetches data from the butler
111 This argument may either be an `InputQuantizedConnection` which
112 describes all the inputs of a quantum, a list of
113 `~lsst.daf.butler.DatasetRef`, or a single
114 `~lsst.daf.butler.DatasetRef`. The function will get and return
115 the corresponding datasets from the butler.
120 This function returns arbitrary objects fetched from the bulter.
121 The structure these objects are returned in depends on the type of
122 the input argument. If the input dataset argument is a
123 `InputQuantizedConnection`, then the return type will be a
124 dictionary with keys corresponding to the attributes of the
125 `InputQuantizedConnection` (which in turn are the attribute
126 identifiers of the connections). If the input argument is of type
127 `list` of `~lsst.daf.butler.DatasetRef` then the return type will
128 be a list of objects. If the input argument is a single
129 `~lsst.daf.butler.DatasetRef` then a single object will be
135 Raised if a `DatasetRef` is passed to get that is not defined in
138 if isinstance(dataset, InputQuantizedConnection):
140 for name, ref
in dataset:
141 if isinstance(ref, list):
142 val = [self.
_get_get(r)
for r
in ref]
144 val = self.
_get_get(ref)
147 elif isinstance(dataset, list):
148 return [self.
_get_get(x)
for x
in dataset]
149 elif isinstance(dataset, DatasetRef)
or isinstance(dataset, DeferredDatasetRef):
150 return self.
_get_get(dataset)
152 raise TypeError(
"Dataset argument is not a type that can be used to get")
154 def put(self, values: typing.Union[Struct, typing.List[typing.Any], object],
155 dataset: typing.Union[OutputQuantizedConnection, typing.List[DatasetRef], DatasetRef]):
156 """Puts data into the butler
160 values : `Struct` or `list` of `object` or `object`
161 The data that should be put with the butler. If the type of the
162 dataset is `OutputQuantizedConnection` then this argument should be
163 a `Struct` with corresponding attribute names. Each attribute
164 should then correspond to either a list of object or a single
165 object depending of the type of the corresponding attribute on
166 dataset. I.e. if ``dataset.calexp`` is
167 ``[datasetRef1, datasetRef2]`` then ``values.calexp`` should be
168 ``[calexp1, calexp2]``. Like wise if there is a single ref, then
169 only a single object need be passed. The same restriction applies
170 if dataset is directly a `list` of `DatasetRef` or a single
173 This argument may either be an `InputQuantizedConnection` which
174 describes all the inputs of a quantum, a list of
175 `lsst.daf.butler.DatasetRef`, or a single
176 `lsst.daf.butler.DatasetRef`. The function will get and return
177 the corresponding datasets from the butler.
182 Raised if a `DatasetRef` is passed to put that is not defined in
183 the quantum object, or the type of values does not match what is
184 expected from the type of dataset.
186 if isinstance(dataset, OutputQuantizedConnection):
187 if not isinstance(values, Struct):
188 raise ValueError(
"dataset is a OutputQuantizedConnection, a Struct with corresponding"
189 " attributes must be passed as the values to put")
190 for name, refs
in dataset:
191 valuesAttribute = getattr(values, name)
192 if isinstance(refs, list):
193 if len(refs) != len(valuesAttribute):
194 raise ValueError(f
"There must be a object to put for every Dataset ref in {name}")
195 for i, ref
in enumerate(refs):
196 self.
_put_put(valuesAttribute[i], ref)
198 self.
_put_put(valuesAttribute, refs)
199 elif isinstance(dataset, list):
200 if len(dataset) != len(values):
201 raise ValueError(
"There must be a common number of references and values to put")
202 for i, ref
in enumerate(dataset):
203 self.
_put_put(values[i], ref)
204 elif isinstance(dataset, DatasetRef):
205 self.
_put_put(values, dataset)
207 raise TypeError(
"Dataset argument is not a type that can be used to put")
209 def _checkMembership(self, ref: typing.Union[typing.List[DatasetRef], DatasetRef], inout: set):
210 """Internal function used to check if a DatasetRef is part of the input
213 This function will raise an exception if the ButlerQuantumContext is
214 used to get/put a DatasetRef which is not defined in the quantum.
218 ref : `list` of `DatasetRef` or `DatasetRef`
219 Either a list or a single `DatasetRef` to check
221 The connection type to check, e.g. either an input or an output.
222 This prevents both types needing to be checked for every operation,
223 which may be important for Quanta with lots of `DatasetRef`.
225 if not isinstance(ref, list):
228 if (r.datasetType, r.dataId)
not in inout:
229 raise ValueError(
"DatasetRef is not part of the Quantum being processed")
def _checkMembership(self, typing.Union[typing.List[DatasetRef], DatasetRef] ref, set inout)
def put(self, typing.Union[Struct, typing.List[typing.Any], object] values, typing.Union[OutputQuantizedConnection, typing.List[DatasetRef], DatasetRef] dataset)
object get(self, typing.Union[InputQuantizedConnection, typing.List[DatasetRef], DatasetRef] dataset)
def __init__(self, Butler butler, Quantum quantum)
daf::base::PropertySet * set