LSST Applications  21.0.0+04719a4bac,21.0.0-1-ga51b5d4+f5e6047307,21.0.0-11-g2b59f77+a9c1acf22d,21.0.0-11-ga42c5b2+86977b0b17,21.0.0-12-gf4ce030+76814010d2,21.0.0-13-g1721dae+760e7a6536,21.0.0-13-g3a573fe+768d78a30a,21.0.0-15-g5a7caf0+f21cbc5713,21.0.0-16-g0fb55c1+b60e2d390c,21.0.0-19-g4cded4ca+71a93a33c0,21.0.0-2-g103fe59+bb20972958,21.0.0-2-g45278ab+04719a4bac,21.0.0-2-g5242d73+3ad5d60fb1,21.0.0-2-g7f82c8f+8babb168e8,21.0.0-2-g8f08a60+06509c8b61,21.0.0-2-g8faa9b5+616205b9df,21.0.0-2-ga326454+8babb168e8,21.0.0-2-gde069b7+5e4aea9c2f,21.0.0-2-gecfae73+1d3a86e577,21.0.0-2-gfc62afb+3ad5d60fb1,21.0.0-25-g1d57be3cd+e73869a214,21.0.0-3-g357aad2+ed88757d29,21.0.0-3-g4a4ce7f+3ad5d60fb1,21.0.0-3-g4be5c26+3ad5d60fb1,21.0.0-3-g65f322c+e0b24896a3,21.0.0-3-g7d9da8d+616205b9df,21.0.0-3-ge02ed75+a9c1acf22d,21.0.0-4-g591bb35+a9c1acf22d,21.0.0-4-g65b4814+b60e2d390c,21.0.0-4-gccdca77+0de219a2bc,21.0.0-4-ge8a399c+6c55c39e83,21.0.0-5-gd00fb1e+05fce91b99,21.0.0-6-gc675373+3ad5d60fb1,21.0.0-64-g1122c245+4fb2b8f86e,21.0.0-7-g04766d7+cd19d05db2,21.0.0-7-gdf92d54+04719a4bac,21.0.0-8-g5674e7b+d1bd76f71f,master-gac4afde19b+a9c1acf22d,w.2021.13
LSST Data Management Base Package
makeCoaddTempExp.py
Go to the documentation of this file.
1 #
2 # LSST Data Management System
3 # Copyright 2008, 2009, 2010, 2011, 2012 LSST Corporation.
4 #
5 # This product includes software developed by the
6 # LSST Project (http://www.lsst.org/).
7 #
8 # This program is free software: you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation, either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the LSST License Statement and
19 # the GNU General Public License along with this program. If not,
20 # see <http://www.lsstcorp.org/LegalNotices/>.
21 #
22 import numpy
23 
24 import lsst.pex.config as pexConfig
25 import lsst.daf.persistence as dafPersist
26 import lsst.afw.image as afwImage
27 import lsst.coadd.utils as coaddUtils
28 import lsst.pipe.base as pipeBase
29 import lsst.pipe.base.connectionTypes as connectionTypes
30 import lsst.log as log
31 import lsst.utils as utils
32 import lsst.geom
33 from lsst.meas.algorithms import CoaddPsf, CoaddPsfConfig
34 from lsst.skymap import BaseSkyMap
35 from .coaddBase import CoaddBaseTask, makeSkyInfo, reorderAndPadList
36 from .warpAndPsfMatch import WarpAndPsfMatchTask
37 from .coaddHelpers import groupPatchExposures, getGroupDataRef
38 from collections.abc import Iterable
39 
40 __all__ = ["MakeCoaddTempExpTask", "MakeWarpTask", "MakeWarpConfig"]
41 
42 
43 class MissingExposureError(Exception):
44  """Raised when data cannot be retrieved for an exposure.
45  When processing patches, sometimes one exposure is missing; this lets us
46  distinguish bewteen that case, and other errors.
47  """
48  pass
49 
50 
51 class MakeCoaddTempExpConfig(CoaddBaseTask.ConfigClass):
52  """Config for MakeCoaddTempExpTask
53  """
54  warpAndPsfMatch = pexConfig.ConfigurableField(
55  target=WarpAndPsfMatchTask,
56  doc="Task to warp and PSF-match calexp",
57  )
58  doWrite = pexConfig.Field(
59  doc="persist <coaddName>Coadd_<warpType>Warp",
60  dtype=bool,
61  default=True,
62  )
63  bgSubtracted = pexConfig.Field(
64  doc="Work with a background subtracted calexp?",
65  dtype=bool,
66  default=True,
67  )
68  coaddPsf = pexConfig.ConfigField(
69  doc="Configuration for CoaddPsf",
70  dtype=CoaddPsfConfig,
71  )
72  makeDirect = pexConfig.Field(
73  doc="Make direct Warp/Coadds",
74  dtype=bool,
75  default=True,
76  )
77  makePsfMatched = pexConfig.Field(
78  doc="Make Psf-Matched Warp/Coadd?",
79  dtype=bool,
80  default=False,
81  )
82 
83  doWriteEmptyWarps = pexConfig.Field(
84  dtype=bool,
85  default=False,
86  doc="Write out warps even if they are empty"
87  )
88 
89  hasFakes = pexConfig.Field(
90  doc="Should be set to True if fake sources have been inserted into the input data.",
91  dtype=bool,
92  default=False,
93  )
94  doApplySkyCorr = pexConfig.Field(dtype=bool, default=False, doc="Apply sky correction?")
95 
96  def validate(self):
97  CoaddBaseTask.ConfigClass.validate(self)
98  if not self.makePsfMatchedmakePsfMatched and not self.makeDirectmakeDirect:
99  raise RuntimeError("At least one of config.makePsfMatched and config.makeDirect must be True")
100  if self.doPsfMatch:
101  # Backwards compatibility.
102  log.warn("Config doPsfMatch deprecated. Setting makePsfMatched=True and makeDirect=False")
103  self.makePsfMatchedmakePsfMatched = True
104  self.makeDirectmakeDirect = False
105 
106  def setDefaults(self):
107  CoaddBaseTask.ConfigClass.setDefaults(self)
108  self.warpAndPsfMatchwarpAndPsfMatch.psfMatch.kernel.active.kernelSize = self.matchingKernelSize
109 
110 
116 
117 
119  r"""!Warp and optionally PSF-Match calexps onto an a common projection.
120 
121  @anchor MakeCoaddTempExpTask_
122 
123  @section pipe_tasks_makeCoaddTempExp_Contents Contents
124 
125  - @ref pipe_tasks_makeCoaddTempExp_Purpose
126  - @ref pipe_tasks_makeCoaddTempExp_Initialize
127  - @ref pipe_tasks_makeCoaddTempExp_IO
128  - @ref pipe_tasks_makeCoaddTempExp_Config
129  - @ref pipe_tasks_makeCoaddTempExp_Debug
130  - @ref pipe_tasks_makeCoaddTempExp_Example
131 
132  @section pipe_tasks_makeCoaddTempExp_Purpose Description
133 
134  Warp and optionally PSF-Match calexps onto a common projection, by
135  performing the following operations:
136  - Group calexps by visit/run
137  - For each visit, generate a Warp by calling method @ref makeTempExp.
138  makeTempExp loops over the visit's calexps calling @ref WarpAndPsfMatch
139  on each visit
140 
141  The result is a `directWarp` (and/or optionally a `psfMatchedWarp`).
142 
143  @section pipe_tasks_makeCoaddTempExp_Initialize Task Initialization
144 
145  @copydoc \_\_init\_\_
146 
147  This task has one special keyword argument: passing reuse=True will cause
148  the task to skip the creation of warps that are already present in the
149  output repositories.
150 
151  @section pipe_tasks_makeCoaddTempExp_IO Invoking the Task
152 
153  This task is primarily designed to be run from the command line.
154 
155  The main method is `runDataRef`, which takes a single butler data reference for the patch(es)
156  to process.
157 
158  @copydoc run
159 
160  WarpType identifies the types of convolutions applied to Warps (previously CoaddTempExps).
161  Only two types are available: direct (for regular Warps/Coadds) and psfMatched
162  (for Warps/Coadds with homogenized PSFs). We expect to add a third type, likelihood,
163  for generating likelihood Coadds with Warps that have been correlated with their own PSF.
164 
165  @section pipe_tasks_makeCoaddTempExp_Config Configuration parameters
166 
167  See @ref MakeCoaddTempExpConfig and parameters inherited from
168  @link lsst.pipe.tasks.coaddBase.CoaddBaseConfig CoaddBaseConfig @endlink
169 
170  @subsection pipe_tasks_MakeCoaddTempExp_psfMatching Guide to PSF-Matching Configs
171 
172  To make `psfMatchedWarps`, select `config.makePsfMatched=True`. The subtask
173  @link lsst.ip.diffim.modelPsfMatch.ModelPsfMatchTask ModelPsfMatchTask @endlink
174  is responsible for the PSF-Matching, and its config is accessed via `config.warpAndPsfMatch.psfMatch`.
175  The optimal configuration depends on aspects of dataset: the pixel scale, average PSF FWHM and
176  dimensions of the PSF kernel. These configs include the requested model PSF, the matching kernel size,
177  padding of the science PSF thumbnail and spatial sampling frequency of the PSF.
178 
179  *Config Guidelines*: The user must specify the size of the model PSF to which to match by setting
180  `config.modelPsf.defaultFwhm` in units of pixels. The appropriate values depends on science case.
181  In general, for a set of input images, this config should equal the FWHM of the visit
182  with the worst seeing. The smallest it should be set to is the median FWHM. The defaults
183  of the other config options offer a reasonable starting point.
184  The following list presents the most common problems that arise from a misconfigured
185  @link lsst.ip.diffim.modelPsfMatch.ModelPsfMatchTask ModelPsfMatchTask @endlink
186  and corresponding solutions. All assume the default Alard-Lupton kernel, with configs accessed via
187  ```config.warpAndPsfMatch.psfMatch.kernel['AL']```. Each item in the list is formatted as:
188  Problem: Explanation. *Solution*
189 
190  *Troublshooting PSF-Matching Configuration:*
191  - Matched PSFs look boxy: The matching kernel is too small. _Increase the matching kernel size.
192  For example:_
193 
194  config.warpAndPsfMatch.psfMatch.kernel['AL'].kernelSize=27 # default 21
195 
196  Note that increasing the kernel size also increases runtime.
197  - Matched PSFs look ugly (dipoles, quadropoles, donuts): unable to find good solution
198  for matching kernel. _Provide the matcher with more data by either increasing
199  the spatial sampling by decreasing the spatial cell size,_
200 
201  config.warpAndPsfMatch.psfMatch.kernel['AL'].sizeCellX = 64 # default 128
202  config.warpAndPsfMatch.psfMatch.kernel['AL'].sizeCellY = 64 # default 128
203 
204  _or increasing the padding around the Science PSF, for example:_
205 
206  config.warpAndPsfMatch.psfMatch.autoPadPsfTo=1.6 # default 1.4
207 
208  Increasing `autoPadPsfTo` increases the minimum ratio of input PSF dimensions to the
209  matching kernel dimensions, thus increasing the number of pixels available to fit
210  after convolving the PSF with the matching kernel.
211  Optionally, for debugging the effects of padding, the level of padding may be manually
212  controlled by setting turning off the automatic padding and setting the number
213  of pixels by which to pad the PSF:
214 
215  config.warpAndPsfMatch.psfMatch.doAutoPadPsf = False # default True
216  config.warpAndPsfMatch.psfMatch.padPsfBy = 6 # pixels. default 0
217 
218  - Deconvolution: Matching a large PSF to a smaller PSF produces
219  a telltale noise pattern which looks like ripples or a brain.
220  _Increase the size of the requested model PSF. For example:_
221 
222  config.modelPsf.defaultFwhm = 11 # Gaussian sigma in units of pixels.
223 
224  - High frequency (sometimes checkered) noise: The matching basis functions are too small.
225  _Increase the width of the Gaussian basis functions. For example:_
226 
227  config.warpAndPsfMatch.psfMatch.kernel['AL'].alardSigGauss=[1.5, 3.0, 6.0]
228  # from default [0.7, 1.5, 3.0]
229 
230 
231  @section pipe_tasks_makeCoaddTempExp_Debug Debug variables
232 
233  MakeCoaddTempExpTask has no debug output, but its subtasks do.
234 
235  @section pipe_tasks_makeCoaddTempExp_Example A complete example of using MakeCoaddTempExpTask
236 
237  This example uses the package ci_hsc to show how MakeCoaddTempExp fits
238  into the larger Data Release Processing.
239  Set up by running:
240 
241  setup ci_hsc
242  cd $CI_HSC_DIR
243  # if not built already:
244  python $(which scons) # this will take a while
245 
246  The following assumes that `processCcd.py` and `makeSkyMap.py` have previously been run
247  (e.g. by building `ci_hsc` above) to generate a repository of calexps and an
248  output respository with the desired SkyMap. The command,
249 
250  makeCoaddTempExp.py $CI_HSC_DIR/DATA --rerun ci_hsc \
251  --id patch=5,4 tract=0 filter=HSC-I \
252  --selectId visit=903988 ccd=16 --selectId visit=903988 ccd=17 \
253  --selectId visit=903988 ccd=23 --selectId visit=903988 ccd=24 \
254  --config doApplyExternalPhotoCalib=False doApplyExternalSkyWcs=False \
255  makePsfMatched=True modelPsf.defaultFwhm=11
256 
257  writes a direct and PSF-Matched Warp to
258  - `$CI_HSC_DIR/DATA/rerun/ci_hsc/deepCoadd/HSC-I/0/5,4/warp-HSC-I-0-5,4-903988.fits` and
259  - `$CI_HSC_DIR/DATA/rerun/ci_hsc/deepCoadd/HSC-I/0/5,4/psfMatchedWarp-HSC-I-0-5,4-903988.fits`
260  respectively.
261 
262  @note PSF-Matching in this particular dataset would benefit from adding
263  `--configfile ./matchingConfig.py` to
264  the command line arguments where `matchingConfig.py` is defined by:
265 
266  echo "
267  config.warpAndPsfMatch.psfMatch.kernel['AL'].kernelSize=27
268  config.warpAndPsfMatch.psfMatch.kernel['AL'].alardSigGauss=[1.5, 3.0, 6.0]" > matchingConfig.py
269 
270 
271  Add the option `--help` to see more options.
272  """
273  ConfigClass = MakeCoaddTempExpConfig
274  _DefaultName = "makeCoaddTempExp"
275 
276  def __init__(self, reuse=False, **kwargs):
277  CoaddBaseTask.__init__(self, **kwargs)
278  self.reusereuse = reuse
279  self.makeSubtask("warpAndPsfMatch")
280  if self.config.hasFakes:
281  self.calexpTypecalexpType = "fakes_calexp"
282  else:
283  self.calexpTypecalexpType = "calexp"
284 
285  @pipeBase.timeMethod
286  def runDataRef(self, patchRef, selectDataList=[]):
287  """!Produce <coaddName>Coadd_<warpType>Warp images by warping and optionally PSF-matching.
288 
289  @param[in] patchRef: data reference for sky map patch. Must include keys "tract", "patch",
290  plus the camera-specific filter key (e.g. "filter" or "band")
291  @return: dataRefList: a list of data references for the new <coaddName>Coadd_directWarps
292  if direct or both warp types are requested and <coaddName>Coadd_psfMatchedWarps if only psfMatched
293  warps are requested.
294 
295  @warning: this task assumes that all exposures in a warp (coaddTempExp) have the same filter.
296 
297  @warning: this task sets the PhotoCalib of the coaddTempExp to the PhotoCalib of the first calexp
298  with any good pixels in the patch. For a mosaic camera the resulting PhotoCalib should be ignored
299  (assembleCoadd should determine zeropoint scaling without referring to it).
300  """
301  skyInfo = self.getSkyInfogetSkyInfo(patchRef)
302 
303  # DataRefs to return are of type *_directWarp unless only *_psfMatchedWarp requested
304  if self.config.makePsfMatched and not self.config.makeDirect:
305  primaryWarpDataset = self.getTempExpDatasetNamegetTempExpDatasetName("psfMatched")
306  else:
307  primaryWarpDataset = self.getTempExpDatasetNamegetTempExpDatasetName("direct")
308 
309  calExpRefList = self.selectExposuresselectExposures(patchRef, skyInfo, selectDataList=selectDataList)
310 
311  if len(calExpRefList) == 0:
312  self.log.warn("No exposures to coadd for patch %s", patchRef.dataId)
313  return None
314  self.log.info("Selected %d calexps for patch %s", len(calExpRefList), patchRef.dataId)
315  calExpRefList = [calExpRef for calExpRef in calExpRefList if calExpRef.datasetExists(self.calexpTypecalexpType)]
316  self.log.info("Processing %d existing calexps for patch %s", len(calExpRefList), patchRef.dataId)
317 
318  groupData = groupPatchExposures(patchRef, calExpRefList, self.getCoaddDatasetNamegetCoaddDatasetName(),
319  primaryWarpDataset)
320  self.log.info("Processing %d warp exposures for patch %s", len(groupData.groups), patchRef.dataId)
321 
322  dataRefList = []
323  for i, (tempExpTuple, calexpRefList) in enumerate(groupData.groups.items()):
324  tempExpRef = getGroupDataRef(patchRef.getButler(), primaryWarpDataset,
325  tempExpTuple, groupData.keys)
326  if self.reusereuse and tempExpRef.datasetExists(datasetType=primaryWarpDataset, write=True):
327  self.log.info("Skipping makeCoaddTempExp for %s; output already exists.", tempExpRef.dataId)
328  dataRefList.append(tempExpRef)
329  continue
330  self.log.info("Processing Warp %d/%d: id=%s", i, len(groupData.groups), tempExpRef.dataId)
331 
332  # TODO: mappers should define a way to go from the "grouping keys" to a numeric ID (#2776).
333  # For now, we try to get a long integer "visit" key, and if we can't, we just use the index
334  # of the visit in the list.
335  try:
336  visitId = int(tempExpRef.dataId["visit"])
337  except (KeyError, ValueError):
338  visitId = i
339 
340  calExpList = []
341  ccdIdList = []
342  dataIdList = []
343 
344  for calExpInd, calExpRef in enumerate(calexpRefList):
345  self.log.info("Reading calexp %s of %s for Warp id=%s", calExpInd+1, len(calexpRefList),
346  calExpRef.dataId)
347  try:
348  ccdId = calExpRef.get("ccdExposureId", immediate=True)
349  except Exception:
350  ccdId = calExpInd
351  try:
352  # We augment the dataRef here with the tract, which is harmless for loading things
353  # like calexps that don't need the tract, and necessary for meas_mosaic outputs,
354  # which do.
355  calExpRef = calExpRef.butlerSubset.butler.dataRef(self.calexpTypecalexpType,
356  dataId=calExpRef.dataId,
357  tract=skyInfo.tractInfo.getId())
358  calExp = self.getCalibratedExposuregetCalibratedExposure(calExpRef, bgSubtracted=self.config.bgSubtracted)
359  except Exception as e:
360  self.log.warn("Calexp %s not found; skipping it: %s", calExpRef.dataId, e)
361  continue
362 
363  if self.config.doApplySkyCorr:
364  self.applySkyCorrapplySkyCorr(calExpRef, calExp)
365 
366  calExpList.append(calExp)
367  ccdIdList.append(ccdId)
368  dataIdList.append(calExpRef.dataId)
369 
370  exps = self.runrun(calExpList, ccdIdList, skyInfo, visitId, dataIdList).exposures
371 
372  if any(exps.values()):
373  dataRefList.append(tempExpRef)
374  else:
375  self.log.warn("Warp %s could not be created", tempExpRef.dataId)
376 
377  if self.config.doWrite:
378  for (warpType, exposure) in exps.items(): # compatible w/ Py3
379  if exposure is not None:
380  self.log.info("Persisting %s" % self.getTempExpDatasetNamegetTempExpDatasetName(warpType))
381  tempExpRef.put(exposure, self.getTempExpDatasetNamegetTempExpDatasetName(warpType))
382 
383  return dataRefList
384 
385  @pipeBase.timeMethod
386  def run(self, calExpList, ccdIdList, skyInfo, visitId=0, dataIdList=None, **kwargs):
387  """Create a Warp from inputs
388 
389  We iterate over the multiple calexps in a single exposure to construct
390  the warp (previously called a coaddTempExp) of that exposure to the
391  supplied tract/patch.
392 
393  Pixels that receive no pixels are set to NAN; this is not correct
394  (violates LSST algorithms group policy), but will be fixed up by
395  interpolating after the coaddition.
396 
397  @param calexpRefList: List of data references for calexps that (may)
398  overlap the patch of interest
399  @param skyInfo: Struct from CoaddBaseTask.getSkyInfo() with geometric
400  information about the patch
401  @param visitId: integer identifier for visit, for the table that will
402  produce the CoaddPsf
403  @return a pipeBase Struct containing:
404  - exposures: a dictionary containing the warps requested:
405  "direct": direct warp if config.makeDirect
406  "psfMatched": PSF-matched warp if config.makePsfMatched
407  """
408  warpTypeList = self.getWarpTypeListgetWarpTypeList()
409 
410  totGoodPix = {warpType: 0 for warpType in warpTypeList}
411  didSetMetadata = {warpType: False for warpType in warpTypeList}
412  coaddTempExps = {warpType: self._prepareEmptyExposure_prepareEmptyExposure(skyInfo) for warpType in warpTypeList}
413  inputRecorder = {warpType: self.inputRecorder.makeCoaddTempExpRecorder(visitId, len(calExpList))
414  for warpType in warpTypeList}
415 
416  modelPsf = self.config.modelPsf.apply() if self.config.makePsfMatched else None
417  if dataIdList is None:
418  dataIdList = ccdIdList
419 
420  for calExpInd, (calExp, ccdId, dataId) in enumerate(zip(calExpList, ccdIdList, dataIdList)):
421  self.log.info("Processing calexp %d of %d for this Warp: id=%s",
422  calExpInd+1, len(calExpList), dataId)
423 
424  try:
425  warpedAndMatched = self.warpAndPsfMatch.run(calExp, modelPsf=modelPsf,
426  wcs=skyInfo.wcs, maxBBox=skyInfo.bbox,
427  makeDirect=self.config.makeDirect,
428  makePsfMatched=self.config.makePsfMatched)
429  except Exception as e:
430  self.log.warn("WarpAndPsfMatch failed for calexp %s; skipping it: %s", dataId, e)
431  continue
432  try:
433  numGoodPix = {warpType: 0 for warpType in warpTypeList}
434  for warpType in warpTypeList:
435  exposure = warpedAndMatched.getDict()[warpType]
436  if exposure is None:
437  continue
438  coaddTempExp = coaddTempExps[warpType]
439  if didSetMetadata[warpType]:
440  mimg = exposure.getMaskedImage()
441  mimg *= (coaddTempExp.getPhotoCalib().getInstFluxAtZeroMagnitude()
442  / exposure.getPhotoCalib().getInstFluxAtZeroMagnitude())
443  del mimg
444  numGoodPix[warpType] = coaddUtils.copyGoodPixels(
445  coaddTempExp.getMaskedImage(), exposure.getMaskedImage(), self.getBadPixelMaskgetBadPixelMask())
446  totGoodPix[warpType] += numGoodPix[warpType]
447  self.log.debug("Calexp %s has %d good pixels in this patch (%.1f%%) for %s",
448  dataId, numGoodPix[warpType],
449  100.0*numGoodPix[warpType]/skyInfo.bbox.getArea(), warpType)
450  if numGoodPix[warpType] > 0 and not didSetMetadata[warpType]:
451  coaddTempExp.setPhotoCalib(exposure.getPhotoCalib())
452  coaddTempExp.setFilterLabel(exposure.getFilterLabel())
453  coaddTempExp.getInfo().setVisitInfo(exposure.getInfo().getVisitInfo())
454  # PSF replaced with CoaddPsf after loop if and only if creating direct warp
455  coaddTempExp.setPsf(exposure.getPsf())
456  didSetMetadata[warpType] = True
457 
458  # Need inputRecorder for CoaddApCorrMap for both direct and PSF-matched
459  inputRecorder[warpType].addCalExp(calExp, ccdId, numGoodPix[warpType])
460 
461  except Exception as e:
462  self.log.warn("Error processing calexp %s; skipping it: %s", dataId, e)
463  continue
464 
465  for warpType in warpTypeList:
466  self.log.info("%sWarp has %d good pixels (%.1f%%)",
467  warpType, totGoodPix[warpType], 100.0*totGoodPix[warpType]/skyInfo.bbox.getArea())
468 
469  if totGoodPix[warpType] > 0 and didSetMetadata[warpType]:
470  inputRecorder[warpType].finish(coaddTempExps[warpType], totGoodPix[warpType])
471  if warpType == "direct":
472  coaddTempExps[warpType].setPsf(
473  CoaddPsf(inputRecorder[warpType].coaddInputs.ccds, skyInfo.wcs,
474  self.config.coaddPsf.makeControl()))
475  else:
476  if not self.config.doWriteEmptyWarps:
477  # No good pixels. Exposure still empty
478  coaddTempExps[warpType] = None
479 
480  result = pipeBase.Struct(exposures=coaddTempExps)
481  return result
482 
483  def getCalibratedExposure(self, dataRef, bgSubtracted):
484  """Return one calibrated Exposure, possibly with an updated SkyWcs.
485 
486  @param[in] dataRef a sensor-level data reference
487  @param[in] bgSubtracted return calexp with background subtracted? If False get the
488  calexp's background background model and add it to the calexp.
489  @return calibrated exposure
490 
491  @raises MissingExposureError If data for the exposure is not available.
492 
493  If config.doApplyExternalPhotoCalib is `True`, the photometric calibration
494  (`photoCalib`) is taken from `config.externalPhotoCalibName` via the
495  `name_photoCalib` dataset. Otherwise, the photometric calibration is
496  retrieved from the processed exposure. When
497  `config.doApplyExternalSkyWcs` is `True`, the astrometric calibration
498  is taken from `config.externalSkyWcsName` with the `name_wcs` dataset.
499  Otherwise, the astrometric calibration is taken from the processed
500  exposure.
501  """
502  try:
503  exposure = dataRef.get(self.calexpTypecalexpType, immediate=True)
504  except dafPersist.NoResults as e:
505  raise MissingExposureError('Exposure not found: %s ' % str(e)) from e
506 
507  if not bgSubtracted:
508  background = dataRef.get("calexpBackground", immediate=True)
509  mi = exposure.getMaskedImage()
510  mi += background.getImage()
511  del mi
512 
513  if self.config.doApplyExternalPhotoCalib:
514  source = f"{self.config.externalPhotoCalibName}_photoCalib"
515  self.log.debug("Applying external photoCalib to %s from %s", dataRef.dataId, source)
516  photoCalib = dataRef.get(source)
517  exposure.setPhotoCalib(photoCalib)
518  else:
519  photoCalib = exposure.getPhotoCalib()
520 
521  if self.config.doApplyExternalSkyWcs:
522  source = f"{self.config.externalSkyWcsName}_wcs"
523  self.log.debug("Applying external skyWcs to %s from %s", dataRef.dataId, source)
524  skyWcs = dataRef.get(source)
525  exposure.setWcs(skyWcs)
526 
527  exposure.maskedImage = photoCalib.calibrateImage(exposure.maskedImage,
528  includeScaleUncertainty=self.config.includeCalibVar)
529  exposure.maskedImage /= photoCalib.getCalibrationMean()
530  # TODO: The images will have a calibration of 1.0 everywhere once RFC-545 is implemented.
531  # exposure.setCalib(afwImage.Calib(1.0))
532  return exposure
533 
534  @staticmethod
535  def _prepareEmptyExposure(skyInfo):
536  """Produce an empty exposure for a given patch"""
537  exp = afwImage.ExposureF(skyInfo.bbox, skyInfo.wcs)
538  exp.getMaskedImage().set(numpy.nan, afwImage.Mask
539  .getPlaneBitMask("NO_DATA"), numpy.inf)
540  return exp
541 
542  def getWarpTypeList(self):
543  """Return list of requested warp types per the config.
544  """
545  warpTypeList = []
546  if self.config.makeDirect:
547  warpTypeList.append("direct")
548  if self.config.makePsfMatched:
549  warpTypeList.append("psfMatched")
550  return warpTypeList
551 
552  def applySkyCorr(self, dataRef, calexp):
553  """Apply correction to the sky background level
554 
555  Sky corrections can be generated with the 'skyCorrection.py'
556  executable in pipe_drivers. Because the sky model used by that
557  code extends over the entire focal plane, this can produce
558  better sky subtraction.
559 
560  The calexp is updated in-place.
561 
562  Parameters
563  ----------
564  dataRef : `lsst.daf.persistence.ButlerDataRef`
565  Data reference for calexp.
566  calexp : `lsst.afw.image.Exposure` or `lsst.afw.image.MaskedImage`
567  Calibrated exposure.
568  """
569  bg = dataRef.get("skyCorr")
570  self.log.debug("Applying sky correction to %s", dataRef.dataId)
571  if isinstance(calexp, afwImage.Exposure):
572  calexp = calexp.getMaskedImage()
573  calexp -= bg.getImage()
574 
575 
576 class MakeWarpConnections(pipeBase.PipelineTaskConnections,
577  dimensions=("tract", "patch", "skymap", "instrument", "visit"),
578  defaultTemplates={"coaddName": "deep",
579  "skyWcsName": "jointcal",
580  "photoCalibName": "fgcmcal"}):
581  calExpList = connectionTypes.Input(
582  doc="Input exposures to be resampled and optionally PSF-matched onto a SkyMap projection/patch",
583  name="calexp",
584  storageClass="ExposureF",
585  dimensions=("instrument", "visit", "detector"),
586  multiple=True,
587  deferLoad=True,
588  )
589  backgroundList = connectionTypes.Input(
590  doc="Input backgrounds to be added back into the calexp if bgSubtracted=False",
591  name="calexpBackground",
592  storageClass="Background",
593  dimensions=("instrument", "visit", "detector"),
594  multiple=True,
595  )
596  skyCorrList = connectionTypes.Input(
597  doc="Input Sky Correction to be subtracted from the calexp if doApplySkyCorr=True",
598  name="skyCorr",
599  storageClass="Background",
600  dimensions=("instrument", "visit", "detector"),
601  multiple=True,
602  )
603  skyMap = connectionTypes.Input(
604  doc="Input definition of geometry/bbox and projection/wcs for warped exposures",
605  name=BaseSkyMap.SKYMAP_DATASET_TYPE_NAME,
606  storageClass="SkyMap",
607  dimensions=("skymap",),
608  )
609  externalSkyWcsTractCatalog = connectionTypes.Input(
610  doc=("Per-tract, per-visit wcs calibrations. These catalogs use the detector "
611  "id for the catalog id, sorted on id for fast lookup."),
612  name="{skyWcsName}SkyWcsCatalog",
613  storageClass="ExposureCatalog",
614  dimensions=("instrument", "visit", "tract"),
615  )
616  externalSkyWcsGlobalCatalog = connectionTypes.Input(
617  doc=("Per-visit wcs calibrations computed globally (with no tract information). "
618  "These catalogs use the detector id for the catalog id, sorted on id for "
619  "fast lookup."),
620  name="{skyWcsName}SkyWcsCatalog",
621  storageClass="ExposureCatalog",
622  dimensions=("instrument", "visit"),
623  )
624  externalPhotoCalibTractCatalog = connectionTypes.Input(
625  doc=("Per-tract, per-visit photometric calibrations. These catalogs use the "
626  "detector id for the catalog id, sorted on id for fast lookup."),
627  name="{photoCalibName}PhotoCalibCatalog",
628  storageClass="ExposureCatalog",
629  dimensions=("instrument", "visit", "tract"),
630  )
631  externalPhotoCalibGlobalCatalog = connectionTypes.Input(
632  doc=("Per-visit photometric calibrations computed globally (with no tract "
633  "information). These catalogs use the detector id for the catalog id, "
634  "sorted on id for fast lookup."),
635  name="{photoCalibName}PhotoCalibCatalog",
636  storageClass="ExposureCatalog",
637  dimensions=("instrument", "visit"),
638  )
639  direct = connectionTypes.Output(
640  doc=("Output direct warped exposure (previously called CoaddTempExp), produced by resampling ",
641  "calexps onto the skyMap patch geometry."),
642  name="{coaddName}Coadd_directWarp",
643  storageClass="ExposureF",
644  dimensions=("tract", "patch", "skymap", "visit", "instrument"),
645  )
646  psfMatched = connectionTypes.Output(
647  doc=("Output PSF-Matched warped exposure (previously called CoaddTempExp), produced by resampling ",
648  "calexps onto the skyMap patch geometry and PSF-matching to a model PSF."),
649  name="{coaddName}Coadd_psfMatchedWarp",
650  storageClass="ExposureF",
651  dimensions=("tract", "patch", "skymap", "visit", "instrument"),
652  )
653  # TODO DM-28769, have selectImages subtask indicate which connections they need:
654  wcsList = connectionTypes.Input(
655  doc="WCSs of calexps used by SelectImages subtask to determine if the calexp overlaps the patch",
656  name="calexp.wcs",
657  storageClass="Wcs",
658  dimensions=("instrument", "visit", "detector"),
659  multiple=True,
660  )
661  bboxList = connectionTypes.Input(
662  doc="BBoxes of calexps used by SelectImages subtask to determine if the calexp overlaps the patch",
663  name="calexp.bbox",
664  storageClass="Box2I",
665  dimensions=("instrument", "visit", "detector"),
666  multiple=True,
667  )
668  srcList = connectionTypes.Input(
669  doc="src catalogs used by PsfWcsSelectImages subtask to further select on PSF stability",
670  name="src",
671  storageClass="SourceCatalog",
672  dimensions=("instrument", "visit", "detector"),
673  multiple=True,
674  )
675  psfList = connectionTypes.Input(
676  doc="PSF models used by BestSeeingWcsSelectImages subtask to futher select on seeing",
677  name="calexp.psf",
678  storageClass="Psf",
679  dimensions=("instrument", "visit", "detector"),
680  multiple=True,
681  )
682 
683  def __init__(self, *, config=None):
684  super().__init__(config=config)
685  if config.bgSubtracted:
686  self.inputs.remove("backgroundList")
687  if not config.doApplySkyCorr:
688  self.inputs.remove("skyCorrList")
689  if config.doApplyExternalSkyWcs:
690  if config.useGlobalExternalSkyWcs:
691  self.inputs.remove("externalSkyWcsTractCatalog")
692  else:
693  self.inputs.remove("externalSkyWcsGlobalCatalog")
694  else:
695  self.inputs.remove("externalSkyWcsTractCatalog")
696  self.inputs.remove("externalSkyWcsGlobalCatalog")
697  if config.doApplyExternalPhotoCalib:
698  if config.useGlobalExternalPhotoCalib:
699  self.inputs.remove("externalPhotoCalibTractCatalog")
700  else:
701  self.inputs.remove("externalPhotoCalibGlobalCatalog")
702  else:
703  self.inputs.remove("externalPhotoCalibTractCatalog")
704  self.inputs.remove("externalPhotoCalibGlobalCatalog")
705  if not config.makeDirect:
706  self.outputs.remove("direct")
707  if not config.makePsfMatched:
708  self.outputs.remove("psfMatched")
709  # TODO DM-28769: add connection per selectImages connections
710  # instead of removing if not PsfWcsSelectImagesTask here:
711  if config.select.target != lsst.pipe.tasks.selectImages.PsfWcsSelectImagesTask:
712  self.inputs.remove("srcList")
713  if config.select.target != lsst.pipe.tasks.selectImages.BestSeeingWcsSelectImagesTask:
714  self.inputs.remove("psfList")
715 
716 
717 class MakeWarpConfig(pipeBase.PipelineTaskConfig, MakeCoaddTempExpConfig,
718  pipelineConnections=MakeWarpConnections):
719 
720  def validate(self):
721  super().validate()
722 
723 
724 class MakeWarpTask(MakeCoaddTempExpTask):
725  """Warp and optionally PSF-Match calexps onto an a common projection
726  """
727  ConfigClass = MakeWarpConfig
728  _DefaultName = "makeWarp"
729 
730  @utils.inheritDoc(pipeBase.PipelineTask)
731  def runQuantum(self, butlerQC, inputRefs, outputRefs):
732  """
733  Notes
734  ----
735  Construct warps for requested warp type for single epoch
736 
737  PipelineTask (Gen3) entry point to warp and optionally PSF-match
738  calexps. This method is analogous to `runDataRef`.
739  """
740 
741  # Ensure all input lists are in same detector order as the calExpList
742  detectorOrder = [ref.datasetRef.dataId['detector'] for ref in inputRefs.calExpList]
743  inputRefs = reorderRefs(inputRefs, detectorOrder, dataIdKey='detector')
744 
745  # Read in all inputs.
746  inputs = butlerQC.get(inputRefs)
747 
748  # Construct skyInfo expected by `run`. We remove the SkyMap itself
749  # from the dictionary so we can pass it as kwargs later.
750  skyMap = inputs.pop("skyMap")
751  quantumDataId = butlerQC.quantum.dataId
752  skyInfo = makeSkyInfo(skyMap, tractId=quantumDataId['tract'], patchId=quantumDataId['patch'])
753 
754  # Construct list of input DataIds expected by `run`
755  dataIdList = [ref.datasetRef.dataId for ref in inputRefs.calExpList]
756  # Construct list of packed integer IDs expected by `run`
757  ccdIdList = [dataId.pack("visit_detector") for dataId in dataIdList]
758 
759  # Run the selector and filter out calexps that were not selected
760  # primarily because they do not overlap the patch
761  cornerPosList = lsst.geom.Box2D(skyInfo.bbox).getCorners()
762  coordList = [skyInfo.wcs.pixelToSky(pos) for pos in cornerPosList]
763  goodIndices = self.select.run(**inputs, coordList=coordList, dataIds=dataIdList)
764  inputs = self.filterInputs(indices=goodIndices, inputs=inputs)
765 
766  # Read from disk only the selected calexps
767  inputs['calExpList'] = [ref.get() for ref in inputs['calExpList']]
768 
769  # Extract integer visitId requested by `run`
770  visits = [dataId['visit'] for dataId in dataIdList]
771  visitId = visits[0]
772 
773  if self.config.doApplyExternalSkyWcs:
774  if self.config.useGlobalExternalSkyWcs:
775  externalSkyWcsCatalog = inputs.pop("externalSkyWcsGlobalCatalog")
776  else:
777  externalSkyWcsCatalog = inputs.pop("externalSkyWcsTractCatalog")
778  else:
779  externalSkyWcsCatalog = None
780 
781  if self.config.doApplyExternalPhotoCalib:
782  if self.config.useGlobalExternalPhotoCalib:
783  externalPhotoCalibCatalog = inputs.pop("externalPhotoCalibGlobalCatalog")
784  else:
785  externalPhotoCalibCatalog = inputs.pop("externalPhotoCalibTractCatalog")
786  else:
787  externalPhotoCalibCatalog = None
788 
789  self.prepareCalibratedExposures(**inputs, externalSkyWcsCatalog=externalSkyWcsCatalog,
790  externalPhotoCalibCatalog=externalPhotoCalibCatalog)
791 
792  results = self.run(**inputs, visitId=visitId,
793  ccdIdList=[ccdIdList[i] for i in goodIndices],
794  dataIdList=[dataIdList[i] for i in goodIndices],
795  skyInfo=skyInfo)
796  if self.config.makeDirect:
797  butlerQC.put(results.exposures["direct"], outputRefs.direct)
798  if self.config.makePsfMatched:
799  butlerQC.put(results.exposures["psfMatched"], outputRefs.psfMatched)
800 
801  def filterInputs(self, indices, inputs):
802  """Return task inputs with their lists filtered by indices
803 
804  Parameters
805  ----------
806  indices : `list` of integers
807  inputs : `dict` of `list` of input connections to be passed to run
808  """
809  for key in inputs.keys():
810  # Only down-select on list inputs
811  if isinstance(inputs[key], list):
812  inputs[key] = [inputs[key][ind] for ind in indices]
813  return inputs
814 
815  def prepareCalibratedExposures(self, calExpList, backgroundList=None, skyCorrList=None,
816  externalSkyWcsCatalog=None, externalPhotoCalibCatalog=None,
817  **kwargs):
818  """Calibrate and add backgrounds to input calExpList in place
819 
820  Parameters
821  ----------
822  calExpList : `list` of `lsst.afw.image.Exposure`
823  Sequence of calexps to be modified in place
824  backgroundList : `list` of `lsst.afw.math.backgroundList`, optional
825  Sequence of backgrounds to be added back in if bgSubtracted=False
826  skyCorrList : `list` of `lsst.afw.math.backgroundList`, optional
827  Sequence of background corrections to be subtracted if doApplySkyCorr=True
828  externalSkyWcsCatalog : `lsst.afw.table.ExposureCatalog`, optional
829  Exposure catalog with external skyWcs to be applied
830  if config.doApplyExternalSkyWcs=True. Catalog uses the detector id
831  for the catalog id, sorted on id for fast lookup.
832  externalPhotoCalibCatalog : `lsst.afw.table.ExposureCatalog`, optional
833  Exposure catalog with external photoCalib to be applied
834  if config.doApplyExternalPhotoCalib=True. Catalog uses the detector
835  id for the catalog id, sorted on id for fast lookup.
836  """
837  backgroundList = len(calExpList)*[None] if backgroundList is None else backgroundList
838  skyCorrList = len(calExpList)*[None] if skyCorrList is None else skyCorrList
839 
840  includeCalibVar = self.config.includeCalibVar
841 
842  for calexp, background, skyCorr in zip(calExpList, backgroundList, skyCorrList):
843  mi = calexp.maskedImage
844  if not self.config.bgSubtracted:
845  mi += background.getImage()
846 
847  if externalSkyWcsCatalog is not None or externalPhotoCalibCatalog is not None:
848  detectorId = calexp.getInfo().getDetector().getId()
849 
850  # Find the external photoCalib
851  if externalPhotoCalibCatalog is not None:
852  row = externalPhotoCalibCatalog.find(detectorId)
853  if row is None:
854  raise RuntimeError(f"Detector id {detectorId} not found in "
855  f"externalPhotoCalibCatalog.")
856  photoCalib = row.getPhotoCalib()
857  if photoCalib is None:
858  raise RuntimeError(f"Detector id {detectorId} has None for photoCalib "
859  f"in externalPhotoCalibCatalog.")
860  else:
861  photoCalib = calexp.getPhotoCalib()
862 
863  # Find and apply external skyWcs
864  if externalSkyWcsCatalog is not None:
865  row = externalSkyWcsCatalog.find(detectorId)
866  if row is None:
867  raise RuntimeError(f"Detector id {detectorId} not found in externalSkyWcsCatalog.")
868  skyWcs = row.getWcs()
869  if skyWcs is None:
870  raise RuntimeError(f"Detector id {detectorId} has None for WCS "
871  f" in externalSkyWcsCatalog.")
872  calexp.setWcs(skyWcs)
873 
874  # Calibrate the image
875  calexp.maskedImage = photoCalib.calibrateImage(calexp.maskedImage,
876  includeScaleUncertainty=includeCalibVar)
877  calexp.maskedImage /= photoCalib.getCalibrationMean()
878  # TODO: The images will have a calibration of 1.0 everywhere once RFC-545 is implemented.
879  # exposure.setCalib(afwImage.Calib(1.0))
880 
881  # Apply skycorr
882  if self.config.doApplySkyCorr:
883  mi -= skyCorr.getImage()
884 
885 
886 def reorderRefs(inputRefs, outputSortKeyOrder, dataIdKey):
887  """Reorder inputRefs per outputSortKeyOrder
888 
889  Any inputRefs which are lists will be resorted per specified key e.g.,
890  'detector.' Only iterables will be reordered, and values can be of type
891  `lsst.pipe.base.connections.DeferredDatasetRef` or
892  `lsst.daf.butler.core.datasets.ref.DatasetRef`.
893  Returned lists of refs have the same length as the outputSortKeyOrder.
894  If an outputSortKey not in the inputRef, then it will be padded with None.
895  If an inputRef contains an inputSortKey that is not in the
896  outputSortKeyOrder it will be removed.
897 
898  Parameters
899  ----------
900  inputRefs : `lsst.pipe.base.connections.QuantizedConnection`
901  Input references to be reordered and padded.
902  outputSortKeyOrder : iterable
903  Iterable of values to be compared with inputRef's dataId[dataIdKey]
904  dataIdKey : `str`
905  dataIdKey in the dataRefs to compare with the outputSortKeyOrder.
906 
907  Returns:
908  --------
909  inputRefs: `lsst.pipe.base.connections.QuantizedConnection`
910  Quantized Connection with sorted DatasetRef values sorted if iterable.
911  """
912  for connectionName, refs in inputRefs:
913  if isinstance(refs, Iterable):
914  if hasattr(refs[0], "dataId"):
915  inputSortKeyOrder = [ref.dataId[dataIdKey] for ref in refs]
916  else:
917  inputSortKeyOrder = [ref.datasetRef.dataId[dataIdKey] for ref in refs]
918  if inputSortKeyOrder != outputSortKeyOrder:
919  setattr(inputRefs, connectionName,
920  reorderAndPadList(refs, inputSortKeyOrder, outputSortKeyOrder))
921  return inputRefs
A class to contain the data, WCS, and other information needed to describe an image of the sky.
Definition: Exposure.h:72
Represent a 2-dimensional array of bitmask pixels.
Definition: Mask.h:77
A floating-point coordinate rectangle geometry.
Definition: Box.h:413
CoaddPsf is the Psf derived to be used for non-PSF-matched Coadd images.
Definition: CoaddPsf.h:58
Base class for coaddition.
Definition: coaddBase.py:141
def getTempExpDatasetName(self, warpType="direct")
Definition: coaddBase.py:204
def selectExposures(self, patchRef, skyInfo=None, selectDataList=[])
Select exposures to coadd.
Definition: coaddBase.py:154
def getCoaddDatasetName(self, warpType="direct")
Definition: coaddBase.py:190
def getSkyInfo(self, patchRef)
Use getSkyinfo to return the skyMap, tract and patch information, wcs and the outer bbox of the patch...
Definition: coaddBase.py:174
def getBadPixelMask(self)
Convenience method to provide the bitmask from the mask plane names.
Definition: coaddBase.py:239
Warp and optionally PSF-Match calexps onto an a common projection.
def getCalibratedExposure(self, dataRef, bgSubtracted)
def run(self, calExpList, ccdIdList, skyInfo, visitId=0, dataIdList=None, **kwargs)
def runDataRef(self, patchRef, selectDataList=[])
Produce <coaddName>Coadd_<warpType>Warp images by warping and optionally PSF-matching.
daf::base::PropertySet * set
Definition: fits.cc:912
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects.
int copyGoodPixels(lsst::afw::image::Image< ImagePixelT > &destImage, lsst::afw::image::Image< ImagePixelT > const &srcImage)
copy good pixels from one image to another
bool any(CoordinateExpr< N > const &expr) noexcept
Return true if any elements are true.
Definition: Log.h:706
Fit spatial kernel using approximate fluxes for candidates, and solving a linear system of equations.
def reorderAndPadList(inputList, inputKeys, outputKeys, padWith=None)
def run(self, skyInfo, tempExpRefList, imageScalerList, weightList, altMaskList=None, mask=None, supplementaryData=None)
def makeSkyInfo(skyMap, tractId, patchId)
Definition: coaddBase.py:289
def getGroupDataRef(butler, datasetType, groupTuple, keys)
Definition: coaddHelpers.py:99
def groupPatchExposures(patchDataRef, calexpDataRefList, coaddDatasetType="deepCoadd", tempExpDatasetType="deepCoadd_directWarp")
Definition: coaddHelpers.py:60