23 __all__ = [
"MaskStreaksConfig",
"MaskStreaksTask",
"setDetectionMask"]
33 from skimage.feature
import canny
34 from sklearn.cluster
import KMeans
36 from dataclasses
import dataclass
39 def setDetectionMask(maskedImage, forceSlowBin=False, binning=None, detectedPlane="DETECTED",
40 badMaskPlanes=(
"NO_DATA",
"INTRP",
"BAD",
"SAT",
"EDGE"), detectionThreshold=5):
41 """Make detection mask and set the mask plane
43 Creat a binary image from a masked image by setting all data with signal-to-
44 noise below some threshold to zero, and all data above the threshold to one.
45 If the binning parameter has been set, this procedure will be preceded by a
46 weighted binning of the data in order to smooth the result, after which the
47 result is scaled back to the original dimensions. Set the detection mask
48 plane with this binary image.
52 maskedImage : `lsst.afw.image.maskedImage`
53 Image to be (optionally) binned and converted
54 forceSlowBin : bool (optional)
55 Force usage of slower binning method to check that the two methods
57 binning : int (optional)
58 Number of pixels by which to bin image
59 detectedPlane : str (optional)
60 Name of mask with pixels that were detected above threshold in image
61 badMaskPlanes : set (optional)
62 Names of masks with pixels that are rejected
63 detectionThreshold : float (optional)
64 Boundary in signal-to-noise between non-detections and detections for
65 making a binary image from the original input image
67 data = maskedImage.image.array
68 weights = 1 / maskedImage.variance.array
69 mask = maskedImage.getMask()
71 detectionMask = ((mask.array & mask.getPlaneBitMask(detectedPlane)))
72 badPixelMask = mask.getPlaneBitMask(badMaskPlanes)
73 badMask = (mask.array & badPixelMask) > 0
74 fitMask = detectionMask.astype(bool) & ~badMask
76 fitData = np.copy(data)
78 fitWeights = np.copy(weights)
79 fitWeights[~fitMask] = 0
83 ymax, xmax = fitData.shape
84 if (ymax % binning == 0)
and (xmax % binning == 0)
and (
not forceSlowBin):
86 binNumeratorReshape = (fitData * fitWeights).reshape(ymax // binning, binning,
87 xmax // binning, binning)
88 binDenominatorReshape = fitWeights.reshape(binNumeratorReshape.shape)
89 binnedNumerator = binNumeratorReshape.sum(axis=3).sum(axis=1)
90 binnedDenominator = binDenominatorReshape.sum(axis=3).sum(axis=1)
93 warnings.warn(
'Using slow binning method--consider choosing a binsize that evenly divides '
94 f
'into the image size, so that {ymax} mod binning == 0 '
95 f
'and {xmax} mod binning == 0')
96 xarray = np.arange(xmax)
97 yarray = np.arange(ymax)
98 xmesh, ymesh = np.meshgrid(xarray, yarray)
99 xbins = np.arange(0, xmax + binning, binning)
100 ybins = np.arange(0, ymax + binning, binning)
101 numerator = fitWeights * fitData
102 binnedNumerator, *_ = scipy.stats.binned_statistic_2d(ymesh.ravel(), xmesh.ravel(),
103 numerator.ravel(), statistic=
'sum',
105 binnedDenominator, *_ = scipy.stats.binned_statistic_2d(ymesh.ravel(), xmesh.ravel(),
106 fitWeights.ravel(), statistic=
'sum',
108 binnedData = np.zeros(binnedNumerator.shape)
109 ind = binnedDenominator != 0
110 np.divide(binnedNumerator, binnedDenominator, out=binnedData, where=ind)
111 binnedWeight = binnedDenominator
112 binMask = (binnedData * binnedWeight**0.5) > detectionThreshold
113 tmpOutputMask = binMask.repeat(binning, axis=0)[:ymax]
114 outputMask = tmpOutputMask.repeat(binning, axis=1)[:, :xmax]
116 outputMask = (fitData * fitWeights**0.5) > detectionThreshold
119 maskedImage.mask.array &= ~maskedImage.mask.getPlaneBitMask(detectedPlane)
122 maskedImage.mask.array[outputMask] |= maskedImage.mask.getPlaneBitMask(detectedPlane)
127 """A simple data class to describe a line profile. The parameter `rho`
128 describes the distance from the center of the image, `theta` describes
129 the angle, and `sigma` describes the width of the line.
137 """Collection of `Line` objects.
142 Array of `Line` rho parameters
144 Array of `Line` theta parameters
145 sigmas : np.ndarray (optional)
146 Array of `Line` sigma parameters
151 sigmas = np.zeros(len(rhos))
153 self.
_lines_lines = [
Line(rho, theta, sigma)
for (rho, theta, sigma)
in
154 zip(rhos, thetas, sigmas)]
157 return len(self.
_lines_lines)
160 return self.
_lines_lines[index]
166 joinedString =
", ".join(str(line)
for line
in self.
_lines_lines)
167 return textwrap.shorten(joinedString, width=160, placeholder=
"...")
171 return np.array([line.rho
for line
in self.
_lines_lines])
175 return np.array([line.theta
for line
in self.
_lines_lines])
178 """Add line to current collection of lines.
183 `Line` to add to current collection of lines
189 """Construct and/or fit a model for a linear streak.
191 This assumes a simple model for a streak, in which the streak
192 follows a straight line in pixels space, with a Moffat-shaped profile. The
193 model is fit to data using a Newton-Raphson style minimization algorithm.
194 The initial guess for the line parameters is assumed to be fairly accurate,
195 so only a narrow band of pixels around the initial line estimate is used in
196 fitting the model, which provides a significant speed-up over using all the
197 data. The class can also be used just to construct a model for the data with
198 a line following the given coordinates.
206 line : `Line` (optional)
207 Guess for position of line. Data far from line guess is masked out.
208 Defaults to None, in which case only data with `weights` = 0 is masked
215 self._ymax, self.
_xmax_xmax = data.shape
216 self.
_dtype_dtype = data.dtype
217 xrange = np.arange(self.
_xmax_xmax) - self.
_xmax_xmax / 2.
218 yrange = np.arange(self._ymax) - self._ymax / 2.
219 self.
_rhoMax_rhoMax = ((0.5 * self._ymax)**2 + (0.5 * self.
_xmax_xmax)**2)**0.5
220 self._xmesh, self.
_ymesh_ymesh = np.meshgrid(xrange, yrange)
227 """Set mask around the image region near the line
232 Parameters of line in the image
236 radtheta = np.deg2rad(line.theta)
237 distance = (np.cos(radtheta) * self._xmesh + np.sin(radtheta) * self.
_ymesh_ymesh - line.rho)
238 m = (
abs(distance) < 5 * line.sigma)
249 def _makeMaskedProfile(self, line, fitFlux=True):
250 """Construct the line model in the masked region and calculate its
256 Parameters of line profile for which to make profile in the masked
259 Fit the amplitude of the line profile to the data
264 Model in the masked region
266 Derivative of the model in the masked region
268 invSigma = line.sigma**-1
270 radtheta = np.deg2rad(line.theta)
271 costheta = np.cos(radtheta)
272 sintheta = np.sin(radtheta)
273 distance = (costheta * self.
_mxmesh_mxmesh + sintheta * self.
_mymesh_mymesh - line.rho)
274 distanceSquared = distance**2
278 dDistanceSqdRho = 2 * distance * (-np.ones_like(self.
_mxmesh_mxmesh))
279 dDistanceSqdTheta = (2 * distance * (-sintheta * self.
_mxmesh_mxmesh + costheta * self.
_mymesh_mymesh) * drad)
282 profile = (1 + distanceSquared * invSigma**2)**-2.5
283 dProfile = -2.5 * (1 + distanceSquared * invSigma**2)**-3.5
295 model = flux * profile
298 fluxdProfile = flux * dProfile
299 fluxdProfileInvSigma = fluxdProfile * invSigma**2
300 dModeldRho = fluxdProfileInvSigma * dDistanceSqdRho
301 dModeldTheta = fluxdProfileInvSigma * dDistanceSqdTheta
302 dModeldInvSigma = fluxdProfile * distanceSquared * 2 * invSigma
304 dModel = np.array([dModeldRho, dModeldTheta, dModeldInvSigma])
308 """Construct the line profile model
313 Parameters of the line profile to model
314 fitFlux : bool (optional)
315 Fit the amplitude of the line profile to the data
319 finalModel : np.ndarray
320 Model for line profile
323 finalModel = np.zeros((self._ymax, self.
_xmax_xmax), dtype=self.
_dtype_dtype)
324 finalModel[self.
lineMasklineMask] = model
327 def _lineChi2(self, line, grad=True):
328 """Construct the chi2 between the data and the model
333 `Line` parameters for which to build model and calculate chi2
334 grad : bool (optional)
335 Whether or not to return the gradient and hessian
340 Reduced chi2 of the model
341 reducedDChi : np.ndarray
342 Derivative of the chi2 with respect to rho, theta, invSigma
343 reducedHessianChi : np.ndarray
344 Hessian of the chi2 with respect to rho, theta, invSigma
353 derivChi2 = ((-2 * self.
_maskWeights_maskWeights * (self.
_maskData_maskData - model))[
None, :] * dModel).sum(axis=1)
354 hessianChi2 = (2 * self.
_maskWeights_maskWeights * dModel[:,
None, :] * dModel[
None, :, :]).sum(axis=2)
358 reducedHessianChi = hessianChi2 / self.
lineMaskSizelineMaskSize
359 return reducedChi, reducedDChi, reducedHessianChi
361 def fit(self, dChi2Tol=0.1, maxIter=100):
362 """Perform Newton-Raphson minimization to find line parameters
364 This method takes advantage of having known derivative and Hessian of
365 the multivariate function to quickly and efficiently find the minimum.
366 This is more efficient than the scipy implementation of the Newton-
367 Raphson method, which doesn't take advantage of the Hessian matrix. The
368 method here also performs a line search in the direction of the steepest
369 derivative at each iteration, which reduces the number of iterations
374 dChi2Tol : float (optional)
375 Change in Chi2 tolerated for fit convergence
376 maxIter : int (optional)
377 Maximum number of fit iterations allowed. The fit should converge in
378 ~10 iterations, depending on the value of dChi2Tol, but this
379 maximum provides a backup.
384 Coordinates and inverse width of fit line
386 Reduced Chi2 of model fit to data
388 Boolean where `False` corresponds to a successful fit
398 def line_search(c, dx):
400 testLine =
Line(testx[0], testx[1], testx[2]**-1)
401 return self.
_lineChi2_lineChi2(testLine, grad=
False)
403 while abs(dChi2) > dChi2Tol:
404 line =
Line(x[0], x[1], x[2]**-1)
405 chi2, b, A = self.
_lineChi2_lineChi2(line)
408 dChi2 = oldChi2 - chi2
409 cholesky = scipy.linalg.cho_factor(A)
410 dx = scipy.linalg.cho_solve(cholesky, b)
412 factor, fmin, _, _ = scipy.optimize.brent(line_search, args=(dx,), full_output=
True, tol=0.05)
414 if (x[0] > 1.5 * self.
_rhoMax_rhoMax)
or (iter > maxIter):
420 outline =
Line(x[0], x[1],
abs(x[2])**-1)
422 return outline, chi2, fitFailure
426 """Configuration parameters for `MaskStreaksTask`
428 minimumKernelHeight = pexConfig.Field(
429 doc=
"Minimum height of the streak-finding kernel relative to the tallest kernel",
433 absMinimumKernelHeight = pexConfig.Field(
434 doc=
"Minimum absolute height of the streak-finding kernel",
438 clusterMinimumSize = pexConfig.Field(
439 doc=
"Minimum size in pixels of detected clusters",
443 clusterMinimumDeviation = pexConfig.Field(
444 doc=
"Allowed deviation (in pixels) from a straight line for a detected "
449 delta = pexConfig.Field(
450 doc=
"Stepsize in angle-radius parameter space",
454 nSigma = pexConfig.Field(
455 doc=
"Number of sigmas from center of kernel to include in voting "
460 rhoBinSize = pexConfig.Field(
461 doc=
"Binsize in pixels for position parameter rho when finding "
462 "clusters of detected lines",
466 thetaBinSize = pexConfig.Field(
467 doc=
"Binsize in degrees for angle parameter theta when finding "
468 "clusters of detected lines",
472 invSigma = pexConfig.Field(
473 doc=
"Inverse of the Moffat sigma parameter (in units of pixels)"
474 "describing the profile of the streak",
478 footprintThreshold = pexConfig.Field(
479 doc=
"Threshold at which to determine edge of line, in units of the line"
484 dChi2Tolerance = pexConfig.Field(
485 doc=
"Absolute difference in Chi2 between iterations of line profile"
486 "fitting that is acceptable for convergence",
490 detectedMaskPlane = pexConfig.Field(
491 doc=
"Name of mask with pixels above detection threshold, used for first"
492 "estimate of streak locations",
496 streaksMaskPlane = pexConfig.Field(
497 doc=
"Name of mask plane holding detected streaks",
504 """Find streaks or other straight lines in image data.
506 Nearby objects passing through the field of view of the telescope leave a
507 bright trail in images. This class uses the Kernel Hough Transform (KHT)
508 (Fernandes and Oliveira, 2007), implemented in `lsst.houghtransform`. The
509 procedure works by taking a binary image, either provided as put or produced
510 from the input data image, using a Canny filter to make an image of the
511 edges in the original image, then running the KHT on the edge image. The KHT
512 identifies clusters of non-zero points, breaks those clusters of points into
513 straight lines, keeps clusters with a size greater than the user-set
514 threshold, then performs a voting procedure to find the best-fit coordinates
515 of any straight lines. Given the results of the KHT algorithm, clusters of
516 lines are identified and grouped (generally these correspond to the two
517 edges of a strea) and a profile is fit to the streak in the original
521 ConfigClass = MaskStreaksConfig
522 _DefaultName =
"maskStreaks"
526 """Find streaks in a masked image
530 maskedImage : `lsst.afw.image.maskedImage`
531 The image in which to search for streaks.
535 result : `lsst.pipe.base.Struct`
536 Result struct with components:
538 - ``originalLines``: lines identified by kernel hough transform
539 - ``lineClusters``: lines grouped into clusters in rho-theta space
540 - ``lines``: final result for lines after line-profile fit
541 - ``mask``: 2-d boolean mask where detected lines are True
543 mask = maskedImage.getMask()
544 detectionMask = (mask.array & mask.getPlaneBitMask(self.config.detectedMaskPlane))
549 if len(self.
lineslines) == 0:
550 lineMask = np.zeros(detectionMask.shape, dtype=bool)
555 fitLines, lineMask = self.
_fitProfile_fitProfile(clusters, maskedImage)
558 outputMask = lineMask & detectionMask.astype(bool)
560 return pipeBase.Struct(
562 lineClusters=clusters,
563 originalLines=self.
lineslines,
568 def run(self, maskedImage):
569 """Find and mask streaks in a masked image.
571 Finds streaks in the image and modifies maskedImage in place by adding a
572 mask plane with any identified streaks.
576 maskedImage : `lsst.afw.image.maskedImage`
577 The image in which to search for streaks. The mask detection plane
578 corresponding to `config.detectedMaskPlane` must be set with the
583 result : `lsst.pipe.base.Struct`
584 Result struct with components:
586 - ``originalLines``: lines identified by kernel hough transform
587 - ``lineClusters``: lines grouped into clusters in rho-theta space
588 - ``lines``: final result for lines after line-profile fit
590 streaks = self.
findfind(maskedImage)
592 maskedImage.mask.addMaskPlane(self.config.streaksMaskPlane)
593 maskedImage.mask.array[streaks.mask] |= maskedImage.mask.getPlaneBitMask(self.config.streaksMaskPlane)
595 return pipeBase.Struct(
597 lineClusters=streaks.lineClusters,
598 originalLines=streaks.originalLines,
601 def _cannyFilter(self, image):
602 """Apply a canny filter to the data in order to detect edges
607 2-d image data on which to run filter
611 cannyData : `np.ndarray`
612 2-d image of edges found in input image
614 filterData = image.astype(int)
615 return canny(filterData, low_threshold=0, high_threshold=1, sigma=0.1)
617 def _runKHT(self, image):
618 """Run Kernel Hough Transform on image.
623 2-d image data on which to detect lines
627 result : `LineCollection`
628 Collection of detected lines, with their detected rho and theta
631 lines = lsst.kht.find_lines(image, self.config.clusterMinimumSize,
632 self.config.clusterMinimumDeviation, self.config.delta,
633 self.config.minimumKernelHeight, self.config.nSigma,
634 self.config.absMinimumKernelHeight)
638 def _findClusters(self, lines):
639 """Group lines that are close in parameter space and likely describe
644 lines : `LineCollection`
645 Collection of lines to group into clusters
649 result : `LineCollection`
650 Average `Line` for each cluster of `Line`s in the input
657 x = lines.rhos / self.config.rhoBinSize
658 y = lines.thetas / self.config.thetaBinSize
659 X = np.array([x, y]).T
668 kmeans = KMeans(n_clusters=nClusters).fit(X)
669 clusterStandardDeviations = np.zeros((nClusters, 2))
670 for c
in range(nClusters):
671 inCluster = X[kmeans.labels_ == c]
672 clusterStandardDeviations[c] = np.std(inCluster, axis=0)
674 if (clusterStandardDeviations <= 1).
all():
679 finalClusters = kmeans.cluster_centers_.T
682 finalRhos = finalClusters[0] * self.config.rhoBinSize
683 finalThetas = finalClusters[1] * self.config.thetaBinSize
688 def _fitProfile(self, lines, maskedImage):
689 """Fit the profile of the streak.
691 Given the initial parameters of detected lines, fit a model for the
692 streak to the original (non-binary image). The assumed model is a
693 straight line with a Moffat profile.
697 lines : `LineCollection`
698 Collection of guesses for `Line`s detected in the image
699 maskedImage : `lsst.afw.image.maskedImage`
700 Original image to be used to fit profile of streak.
704 lineFits : `LineCollection`
705 Collection of `Line` profiles fit to the data
706 finalMask : `np.ndarray`
707 2d mask array with detected streaks=1.
709 data = maskedImage.image.array
710 weights = maskedImage.variance.array**-1
713 finalLineMasks = [np.zeros(data.shape, dtype=bool)]
715 line.sigma = self.config.invSigma**-1
718 if lineModel.lineMaskSize == 0:
721 fit, chi2, fitFailure = lineModel.fit(dChi2Tol=self.config.dChi2Tolerance)
725 if ((
abs(fit.rho - line.rho) > 2 * self.config.rhoBinSize)
726 or (
abs(fit.theta - line.theta) > 2 * self.config.thetaBinSize)):
733 lineModel.setLineMask(fit)
734 finalModel = lineModel.makeProfile(fit)
736 finalModelMax =
abs(finalModel).
max()
737 finalLineMask =
abs(finalModel) > self.config.footprintThreshold
739 if not finalLineMask.any():
742 fit.finalModelMax = finalModelMax
744 finalLineMasks.append(finalLineMask)
746 finalMask = np.array(finalLineMasks).
any(axis=0)
748 return lineFits, finalMask
def __init__(self, rhos, thetas, sigmas=None)
def append(self, newLine)
def __getitem__(self, index)
def __init__(self, data, weights, line=None)
def makeProfile(self, line, fitFlux=True)
def _makeMaskedProfile(self, line, fitFlux=True)
def _lineChi2(self, line, grad=True)
def fit(self, dChi2Tol=0.1, maxIter=100)
def setLineMask(self, line)
def run(self, maskedImage)
def find(self, maskedImage)
def _fitProfile(self, lines, maskedImage)
def _findClusters(self, lines)
def _cannyFilter(self, image)
bool any(CoordinateExpr< N > const &expr) noexcept
Return true if any elements are true.
bool all(CoordinateExpr< N > const &expr) noexcept
Return true if all elements are true.
def setDetectionMask(maskedImage, forceSlowBin=False, binning=None, detectedPlane="DETECTED", badMaskPlanes=("NO_DATA", "INTRP", "BAD", "SAT", "EDGE"), detectionThreshold=5)
Angle abs(Angle const &a)