24 from .
import diffimLib
32 from .makeKernelBasisList
import makeKernelBasisList
33 from .psfMatch
import PsfMatchTask, PsfMatchConfigAL
34 from .
import utils
as dituils
36 __all__ = (
"ModelPsfMatchTask",
"ModelPsfMatchConfig")
38 sigma2fwhm = 2.*np.sqrt(2.*np.log(2.))
42 nextInt = int(np.ceil(x))
43 return nextInt + 1
if nextInt%2 == 0
else nextInt
47 """Configuration for model-to-model Psf matching"""
49 kernel = pexConfig.ConfigChoiceField(
56 doAutoPadPsf = pexConfig.Field(
58 doc=(
"If too small, automatically pad the science Psf? "
59 "Pad to smallest dimensions appropriate for the matching kernel dimensions, "
60 "as specified by autoPadPsfTo. If false, pad by the padPsfBy config."),
63 autoPadPsfTo = pexConfig.RangeField(
65 doc=(
"Minimum Science Psf dimensions as a fraction of matching kernel dimensions. "
66 "If the dimensions of the Psf to be matched are less than the "
67 "matching kernel dimensions * autoPadPsfTo, pad Science Psf to this size. "
68 "Ignored if doAutoPadPsf=False."),
73 padPsfBy = pexConfig.Field(
75 doc=
"Pixels (even) to pad Science Psf by before matching. Ignored if doAutoPadPsf=True",
81 self.
kernelkernel.active.singleKernelClipping =
False
82 self.
kernelkernel.active.kernelSumClipping =
False
83 self.
kernelkernel.active.spatialKernelClipping =
False
84 self.
kernelkernel.active.checkConditionNumber =
False
87 self.
kernelkernel.active.constantVarianceWeighting =
True
90 self.
kernelkernel.active.scaleByFwhm =
False
94 """Matching of two model Psfs, and application of the Psf-matching kernel to an input Exposure
99 This Task differs from ImagePsfMatchTask in that it matches two Psf _models_, by realizing
100 them in an Exposure-sized SpatialCellSet and then inserting each Psf-image pair into KernelCandidates.
101 Because none of the pairs of sources that are to be matched should be invalid, all sigma clipping is
102 turned off in ModelPsfMatchConfig. And because there is no tracked _variance_ in the Psf images, the
103 debugging and logging QA info should be interpreted with caution.
105 One item of note is that the sizes of Psf models are fixed (e.g. its defined as a 21x21 matrix). When the
106 Psf-matching kernel is being solved for, the Psf "image" is convolved with each kernel basis function,
107 leading to a loss of information around the borders.
108 This pixel loss will be problematic for the numerical
109 stability of the kernel solution if the size of the convolution kernel
110 (set by ModelPsfMatchConfig.kernelSize) is much bigger than: psfSize//2.
111 Thus the sizes of Psf-model matching kernels are typically smaller
112 than their image-matching counterparts. If the size of the kernel is too small, the convolved stars will
113 look "boxy"; if the kernel is too large, the kernel solution will be "noisy". This is a trade-off that
114 needs careful attention for a given dataset.
116 The primary use case for this Task is in matching an Exposure to a
117 constant-across-the-sky Psf model for the purposes of image coaddition.
118 It is important to note that in the code, the "template" Psf is the Psf
119 that the science image gets matched to. In this sense the order of template and science image are
120 reversed, compared to ImagePsfMatchTask, which operates on the template image.
124 The `lsst.pipe.base.cmdLineTask.CmdLineTask` command line task interface supports a
125 flag -d/--debug to import debug.py from your PYTHONPATH. The relevant contents of debug.py
126 for this Task include:
133 di = lsstDebug.getInfo(name)
134 if name == "lsst.ip.diffim.psfMatch":
135 di.display = True # global
136 di.maskTransparency = 80 # mask transparency
137 di.displayCandidates = True # show all the candidates and residuals
138 di.displayKernelBasis = False # show kernel basis functions
139 di.displayKernelMosaic = True # show kernel realized across the image
140 di.plotKernelSpatialModel = False # show coefficients of spatial model
141 di.showBadCandidates = True # show the bad candidates (red) along with good (green)
142 elif name == "lsst.ip.diffim.modelPsfMatch":
143 di.display = True # global
144 di.maskTransparency = 30 # mask transparency
145 di.displaySpatialCells = True # show spatial cells before the fit
147 lsstDebug.Info = DebugInfo
150 Note that if you want addional logging info, you may add to your scripts:
154 import lsst.log.utils as logUtils
155 logUtils.traceSetAt("ip.diffim", 4)
159 A complete example of using ModelPsfMatchTask
161 This code is modelPsfMatchTask.py in the examples directory, and can be run as e.g.
163 .. code-block :: none
165 examples/modelPsfMatchTask.py
166 examples/modelPsfMatchTask.py --debug
167 examples/modelPsfMatchTask.py --debug --template /path/to/templateExp.fits
168 --science /path/to/scienceExp.fits
170 Create a subclass of ModelPsfMatchTask that accepts two exposures.
171 Note that the "template" exposure contains the Psf that will get matched to,
172 and the "science" exposure is the one that will be convolved:
174 .. code-block :: none
176 class MyModelPsfMatchTask(ModelPsfMatchTask):
177 def __init__(self, *args, **kwargs):
178 ModelPsfMatchTask.__init__(self, *args, **kwargs)
179 def run(self, templateExp, scienceExp):
180 return ModelPsfMatchTask.run(self, scienceExp, templateExp.getPsf())
182 And allow the user the freedom to either run the script in default mode,
183 or point to their own images on disk. Note that these
184 images must be readable as an lsst.afw.image.Exposure:
186 .. code-block :: none
188 if __name__ == "__main__":
190 parser = argparse.ArgumentParser(description="Demonstrate the use of ModelPsfMatchTask")
191 parser.add_argument("--debug", "-d", action="store_true", help="Load debug.py?", default=False)
192 parser.add_argument("--template", "-t", help="Template Exposure to use", default=None)
193 parser.add_argument("--science", "-s", help="Science Exposure to use", default=None)
194 args = parser.parse_args()
196 We have enabled some minor display debugging in this script via the –debug option.
197 However, if you have an lsstDebug debug.py in your PYTHONPATH you will get additional
198 debugging displays. The following block checks for this script:
200 .. code-block :: none
205 # Since I am displaying 2 images here, set the starting frame number for the LSST debug LSST
206 debug.lsstDebug.frame = 3
207 except ImportError as e:
208 print(e, file=sys.stderr)
210 Finally, we call a run method that we define below.
211 First set up a Config and modify some of the parameters.
212 In particular we don't want to "grow" the sizes of the kernel or KernelCandidates,
213 since we are operating with fixed–size images (i.e. the size of the input Psf models).
215 .. code-block :: none
219 # Create the Config and use sum of gaussian basis
221 config = ModelPsfMatchTask.ConfigClass()
222 config.kernel.active.scaleByFwhm = False
224 Make sure the images (if any) that were sent to the script exist on disk and are readable.
225 If no images are sent, make some fake data up for the sake of this example script
226 (have a look at the code if you want more details on generateFakeData):
228 .. code-block :: none
230 # Run the requested method of the Task
231 if args.template is not None and args.science is not None:
232 if not os.path.isfile(args.template):
233 raise FileNotFoundError("Template image %s does not exist" % (args.template))
234 if not os.path.isfile(args.science):
235 raise FileNotFoundError("Science image %s does not exist" % (args.science))
237 templateExp = afwImage.ExposureF(args.template)
238 except Exception as e:
239 raise RuntimeError("Cannot read template image %s" % (args.template))
241 scienceExp = afwImage.ExposureF(args.science)
242 except Exception as e:
243 raise RuntimeError("Cannot read science image %s" % (args.science))
245 templateExp, scienceExp = generateFakeData()
246 config.kernel.active.sizeCellX = 128
247 config.kernel.active.sizeCellY = 128
249 .. code-block :: none
252 afwDisplay.Display(frame=1).mtv(templateExp, title="Example script: Input Template")
253 afwDisplay.Display(frame=2).mtv(scienceExp, title="Example script: Input Science Image")
255 Create and run the Task:
257 .. code-block :: none
260 psfMatchTask = MyModelPsfMatchTask(config=config)
262 result = psfMatchTask.run(templateExp, scienceExp)
264 And finally provide optional debugging display of the Psf-matched (via the Psf models) science image:
266 .. code-block :: none
269 # See if the LSST debug has incremented the frame number; if not start with frame 3
271 frame = debug.lsstDebug.frame + 1
274 afwDisplay.Display(frame=frame).mtv(result.psfMatchedExposure,
275 title="Example script: Matched Science Image")
278 ConfigClass = ModelPsfMatchConfig
281 """Create a ModelPsfMatchTask
286 arguments to be passed to lsst.ip.diffim.PsfMatchTask.__init__
288 keyword arguments to be passed to lsst.ip.diffim.PsfMatchTask.__init__
292 Upon initialization, the kernel configuration is defined by self.config.kernel.active. This Task
293 does have a run() method, which is the default way to call the Task.
295 PsfMatchTask.__init__(self, *args, **kwargs)
299 def run(self, exposure, referencePsfModel, kernelSum=1.0):
300 """Psf-match an exposure to a model Psf
304 exposure : `lsst.afw.image.Exposure`
305 Exposure to Psf-match to the reference Psf model;
306 it must return a valid PSF model via exposure.getPsf()
307 referencePsfModel : `lsst.afw.detection.Psf`
308 The Psf model to match to
309 kernelSum : `float`, optional
310 A multipicative factor to apply to the kernel sum (default=1.0)
315 - ``psfMatchedExposure`` : the Psf-matched Exposure.
316 This has the same parent bbox, Wcs, PhotoCalib and
317 Filter as the input Exposure but no Psf.
318 In theory the Psf should equal referencePsfModel but
319 the match is likely not exact.
320 - ``psfMatchingKernel`` : the spatially varying Psf-matching kernel
321 - ``kernelCellSet`` : SpatialCellSet used to solve for the Psf-matching kernel
322 - ``referencePsfModel`` : Validated and/or modified reference model used
327 if the Exposure does not contain a Psf model
329 if not exposure.hasPsf():
330 raise RuntimeError(
"exposure does not contain a Psf model")
332 maskedImage = exposure.getMaskedImage()
334 self.log.
info(
"compute Psf-matching kernel")
336 kernelCellSet = result.kernelCellSet
337 referencePsfModel = result.referencePsfModel
338 fwhmScience = exposure.getPsf().computeShape().getDeterminantRadius()*sigma2fwhm
339 fwhmModel = referencePsfModel.computeShape().getDeterminantRadius()*sigma2fwhm
342 spatialSolution, psfMatchingKernel, backgroundModel = self.
_solve_solve(kernelCellSet, basisList)
344 if psfMatchingKernel.isSpatiallyVarying():
345 sParameters = np.array(psfMatchingKernel.getSpatialParameters())
346 sParameters[0][0] = kernelSum
347 psfMatchingKernel.setSpatialParameters(sParameters)
349 kParameters = np.array(psfMatchingKernel.getKernelParameters())
350 kParameters[0] = kernelSum
351 psfMatchingKernel.setKernelParameters(kParameters)
353 self.log.
info(
"Psf-match science exposure to reference")
354 psfMatchedExposure = afwImage.ExposureF(exposure.getBBox(), exposure.getWcs())
355 psfMatchedExposure.setFilterLabel(exposure.getFilterLabel())
356 psfMatchedExposure.setPhotoCalib(exposure.getPhotoCalib())
357 psfMatchedExposure.getInfo().setVisitInfo(exposure.getInfo().getVisitInfo())
358 psfMatchedExposure.setPsf(referencePsfModel)
359 psfMatchedMaskedImage = psfMatchedExposure.getMaskedImage()
364 convolutionControl.setDoNormalize(
True)
365 afwMath.convolve(psfMatchedMaskedImage, maskedImage, psfMatchingKernel, convolutionControl)
367 self.log.
info(
"done")
368 return pipeBase.Struct(psfMatchedExposure=psfMatchedExposure,
369 psfMatchingKernel=psfMatchingKernel,
370 kernelCellSet=kernelCellSet,
371 metadata=self.metadata,
374 def _diagnostic(self, kernelCellSet, spatialSolution, spatialKernel, spatialBg):
375 """Print diagnostic information on spatial kernel and background fit
377 The debugging diagnostics are not really useful here, since the images we are matching have
378 no variance. Thus override the _diagnostic method to generate no logging information"""
381 def _buildCellSet(self, exposure, referencePsfModel):
382 """Build a SpatialCellSet for use with the solve method
386 exposure : `lsst.afw.image.Exposure`
387 The science exposure that will be convolved; must contain a Psf
388 referencePsfModel : `lsst.afw.detection.Psf`
389 Psf model to match to
394 - ``kernelCellSet`` : a SpatialCellSet to be used by self._solve
395 - ``referencePsfModel`` : Validated and/or modified
396 reference model used to populate the SpatialCellSet
400 If the reference Psf model and science Psf model have different dimensions,
401 adjust the referencePsfModel (the model to which the exposure PSF will be matched)
402 to match that of the science Psf. If the science Psf dimensions vary across the image,
403 as is common with a WarpedPsf, either pad or clip (depending on config.padPsf)
404 the dimensions to be constant.
406 sizeCellX = self.kConfig.sizeCellX
407 sizeCellY = self.kConfig.sizeCellY
409 scienceBBox = exposure.getBBox()
413 sciencePsfModel = exposure.getPsf()
415 dimenR = referencePsfModel.getLocalKernel().getDimensions()
416 psfWidth, psfHeight = dimenR
418 regionSizeX, regionSizeY = scienceBBox.getDimensions()
419 scienceX0, scienceY0 = scienceBBox.getMin()
423 nCellX = regionSizeX//sizeCellX
424 nCellY = regionSizeY//sizeCellY
426 if nCellX == 0
or nCellY == 0:
427 raise ValueError(
"Exposure dimensions=%s and sizeCell=(%s, %s). Insufficient area to match" %
428 (scienceBBox.getDimensions(), sizeCellX, sizeCellY))
434 for row
in range(nCellY):
435 posY = sizeCellY*row + sizeCellY//2 + scienceY0
436 for col
in range(nCellX):
437 posX = sizeCellX*col + sizeCellX//2 + scienceX0
438 widthS, heightS = sciencePsfModel.computeBBox(
geom.Point2D(posX, posY)).getDimensions()
439 widthList.append(widthS)
440 heightList.append(heightS)
442 psfSize =
max(
max(heightList),
max(widthList))
444 if self.config.doAutoPadPsf:
445 minPsfSize =
nextOddInteger(self.kConfig.kernelSize*self.config.autoPadPsfTo)
446 paddingPix =
max(0, minPsfSize - psfSize)
448 if self.config.padPsfBy % 2 != 0:
449 raise ValueError(
"Config padPsfBy (%i pixels) must be even number." %
450 self.config.padPsfBy)
451 paddingPix = self.config.padPsfBy
454 self.log.
info(
"Padding Science PSF from (%s, %s) to (%s, %s) pixels" %
455 (psfSize, psfSize, paddingPix + psfSize, paddingPix + psfSize))
456 psfSize += paddingPix
459 maxKernelSize = psfSize - 1
460 if maxKernelSize % 2 == 0:
462 if self.kConfig.kernelSize > maxKernelSize:
464 Kernel size (%d) too big to match Psfs of size %d.
465 Please reconfigure by setting one of the following:
466 1) kernel size to <= %d
469 """ % (self.kConfig.kernelSize, psfSize,
470 maxKernelSize, self.kConfig.kernelSize - maxKernelSize)
471 raise ValueError(message)
475 if (dimenR != dimenS):
477 referencePsfModel = referencePsfModel.resized(psfSize, psfSize)
478 self.log.
info(
"Adjusted dimensions of reference PSF model from %s to %s" % (dimenR, dimenS))
479 except Exception
as e:
480 self.log.
warn(
"Zero padding or clipping the reference PSF model of type %s and dimensions %s"
481 " to the science Psf dimensions %s because: %s",
482 referencePsfModel.__class__.__name__, dimenR, dimenS, e)
485 ps = pexConfig.makePropertySet(self.kConfig)
486 for row
in range(nCellY):
488 posY = sizeCellY*row + sizeCellY//2 + scienceY0
490 for col
in range(nCellX):
492 posX = sizeCellX*col + sizeCellX//2 + scienceX0
494 log.log(
"TRACE4." + self.log.
getName(), log.DEBUG,
495 "Creating Psf candidate at %.1f %.1f", posX, posY)
498 referenceMI = self._makePsfMaskedImage(referencePsfModel, posX, posY, dimensions=dimenR)
501 scienceMI = self._makePsfMaskedImage(sciencePsfModel, posX, posY, dimensions=dimenR)
504 kc = diffimLib.makeKernelCandidate(posX, posY, scienceMI, referenceMI, ps)
505 kernelCellSet.insertCandidate(kc)
509 displaySpatialCells =
lsstDebug.Info(__name__).displaySpatialCells
511 if not maskTransparency:
514 afwDisplay.setDefaultMaskTransparency(maskTransparency)
515 if display
and displaySpatialCells:
516 dituils.showKernelSpatialCells(exposure.getMaskedImage(), kernelCellSet,
517 symb=
"o", ctype=afwDisplay.CYAN, ctypeUnused=afwDisplay.YELLOW,
518 ctypeBad=afwDisplay.RED, size=4, frame=lsstDebug.frame,
519 title=
"Image to be convolved")
521 return pipeBase.Struct(kernelCellSet=kernelCellSet,
522 referencePsfModel=referencePsfModel,
525 def _makePsfMaskedImage(self, psfModel, posX, posY, dimensions=None):
526 """Return a MaskedImage of the a PSF Model of specified dimensions
528 rawKernel = psfModel.computeKernelImage(
geom.Point2D(posX, posY)).convertF()
529 if dimensions
is None:
530 dimensions = rawKernel.getDimensions()
531 if rawKernel.getDimensions() == dimensions:
535 kernelIm = afwImage.ImageF(dimensions)
537 (dimensions.getY() - rawKernel.getHeight())//2),
538 rawKernel.getDimensions())
539 kernelIm.assign(rawKernel, bboxToPlace)
542 kernelVar = afwImage.ImageF(dimensions, 1.0)
543 return afwImage.MaskedImageF(kernelIm, kernelMask, kernelVar)
Represent a 2-dimensional array of bitmask pixels.
Parameters to control convolution.
A collection of SpatialCells covering an entire image.
An integer coordinate rectangle.
def __init__(self, *args, **kwargs)
def run(self, exposure, referencePsfModel, kernelSum=1.0)
def _buildCellSet(self, exposure, referencePsfModel)
def _buildCellSet(self, *args)
def _solve(self, kernelCellSet, basisList, returnOnExcept=False)
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects.
std::string const & getName() const noexcept
Return a filter's name.
void convolve(OutImageT &convolvedImage, InImageT const &inImage, KernelT const &kernel, ConvolutionControl const &convolutionControl=ConvolutionControl())
Convolve an Image or MaskedImage with a Kernel, setting pixels of an existing output image.
def makeKernelBasisList(config, targetFwhmPix=None, referenceFwhmPix=None, basisDegGauss=None, metadata=None)