LSST Applications
21.0.0+04719a4bac,21.0.0-1-ga51b5d4+f5e6047307,21.0.0-11-g2b59f77+a9c1acf22d,21.0.0-11-ga42c5b2+86977b0b17,21.0.0-12-gf4ce030+76814010d2,21.0.0-13-g1721dae+760e7a6536,21.0.0-13-g3a573fe+768d78a30a,21.0.0-15-g5a7caf0+f21cbc5713,21.0.0-16-g0fb55c1+b60e2d390c,21.0.0-19-g4cded4ca+71a93a33c0,21.0.0-2-g103fe59+bb20972958,21.0.0-2-g45278ab+04719a4bac,21.0.0-2-g5242d73+3ad5d60fb1,21.0.0-2-g7f82c8f+8babb168e8,21.0.0-2-g8f08a60+06509c8b61,21.0.0-2-g8faa9b5+616205b9df,21.0.0-2-ga326454+8babb168e8,21.0.0-2-gde069b7+5e4aea9c2f,21.0.0-2-gecfae73+1d3a86e577,21.0.0-2-gfc62afb+3ad5d60fb1,21.0.0-25-g1d57be3cd+e73869a214,21.0.0-3-g357aad2+ed88757d29,21.0.0-3-g4a4ce7f+3ad5d60fb1,21.0.0-3-g4be5c26+3ad5d60fb1,21.0.0-3-g65f322c+e0b24896a3,21.0.0-3-g7d9da8d+616205b9df,21.0.0-3-ge02ed75+a9c1acf22d,21.0.0-4-g591bb35+a9c1acf22d,21.0.0-4-g65b4814+b60e2d390c,21.0.0-4-gccdca77+0de219a2bc,21.0.0-4-ge8a399c+6c55c39e83,21.0.0-5-gd00fb1e+05fce91b99,21.0.0-6-gc675373+3ad5d60fb1,21.0.0-64-g1122c245+4fb2b8f86e,21.0.0-7-g04766d7+cd19d05db2,21.0.0-7-gdf92d54+04719a4bac,21.0.0-8-g5674e7b+d1bd76f71f,master-gac4afde19b+a9c1acf22d,w.2021.13
LSST Data Management Base Package
|
Namespaces | |
cmodel | |
common | |
detail | |
display | |
optimizer | |
pixelFitRegion | |
priors | |
psf | |
version | |
Classes | |
class | ImportanceSamplerControl |
Control object for one iteration of adaptive importance sampling. More... | |
class | AdaptiveImportanceSampler |
Sampler class that performs Monte Carlo sampling, while iteratively updating the analytic distribution from which points are drawn. More... | |
struct | CModelStageControl |
Nested control object for CModel that configures one of the three ("initial", "exp", "dev") nonlinear fitting stages. More... | |
struct | CModelControl |
The main control object for CModel, containing parameters for the final linear fit and aggregating the other control objects. More... | |
struct | CModelStageResult |
Result object for a single nonlinear fitting stage of the CModel algorithm. More... | |
struct | CModelResult |
Master result object for CModel, containing results for the final linear fit and three nested CModelStageResult objects for the results of the previous stages. More... | |
class | CModelAlgorithm |
Main public interface class for CModel algorithm. More... | |
class | DoubleShapeletPsfApproxControl |
Control object used to configure a 2-shapelet fit to a PSF model; see DoubleShapeletPsfApproxAlgorithm. More... | |
class | DoubleShapeletPsfApproxAlgorithm |
An algorithm that fits a 2-component shapelet approximation to the PSF model. More... | |
class | GeneralPsfFitterComponentControl |
Control object used to define one piece of multishapelet fit to a PSF model; see GeneralPsfFitterControl. More... | |
class | GeneralPsfFitterControl |
Control object used to configure a multishapelet fit to a PSF model; see GeneralPsfFitter. More... | |
class | GeneralPsfFitter |
Class for fitting multishapelet models to PSF images. More... | |
class | GeneralPsfFitterAlgorithm |
class | MultiShapeletPsfLikelihood |
Likelihood object used to fit multishapelet models to PSF model images; mostly for internal use by GeneralPsfFitter. More... | |
class | Likelihood |
Base class for optimizer/sampler likelihood functions that compute likelihood at a point. More... | |
class | MixtureComponent |
A weighted Student's T or Gaussian distribution used as a component in a Mixture. More... | |
class | MixtureUpdateRestriction |
Helper class used to define restrictions to the form of the component parameters in Mixture::updateEM. More... | |
class | Mixture |
class | MixturePrior |
A prior that's flat in amplitude parameters, and uses a Mixture for nonlinear parameters. More... | |
class | Model |
Abstract base class and concrete factories that define multi-shapelet galaxy models. More... | |
class | MultiModel |
A concrete Model class that simply concatenates several other Models. More... | |
class | OptimizerObjective |
Base class for objective functions for Optimizer. More... | |
class | OptimizerControl |
Configuration object for Optimizer. More... | |
class | OptimizerHistoryRecorder |
class | Optimizer |
A numerical optimizer customized for least-squares problems with Bayesian priors. More... | |
struct | PixelFitRegionControl |
class | PixelFitRegion |
class | Prior |
Base class for Bayesian priors. More... | |
class | SamplingObjective |
class | Sampler |
struct | SemiEmpiricalPriorControl |
class | SemiEmpiricalPrior |
A piecewise prior motivated by both real distributions and practical considerations. More... | |
struct | SoftenedLinearPriorControl |
class | SoftenedLinearPrior |
A prior that's linear in radius and flat in ellipticity, with a cubic roll-off at the edges. More... | |
class | TruncatedGaussian |
Represents a multidimensional Gaussian function truncated at zero. More... | |
class | TruncatedGaussianLogEvaluator |
Helper class for evaluating the -log of a TruncatedGaussian. More... | |
class | TruncatedGaussianEvaluator |
Helper class for evaluating the -log of a TruncatedGaussian. More... | |
class | TruncatedGaussianSampler |
Helper class for drawing samples from a TruncatedGaussian. More... | |
struct | UnitSystem |
A simple struct that combines a Wcs and a PhotoCalib. More... | |
struct | LocalUnitTransform |
A local mapping between two UnitSystems. More... | |
class | UnitTransformedLikelihoodControl |
Control object used to initialize a UnitTransformedLikelihood. More... | |
class | EpochFootprint |
An image at one epoch of a galaxy, plus associated info. More... | |
class | UnitTransformedLikelihood |
A concrete Likelihood class that does not require its parameters and data to be in the same UnitSystem. More... | |
Typedefs | |
typedef float | Pixel |
Typedefs to be used for pixel values. More... | |
typedef double | Scalar |
Typedefs to be used for probability and parameter values. More... | |
typedef Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > | Matrix |
typedef Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > | Vector |
typedef afw::table::Key< Scalar > | ScalarKey |
typedef afw::table::Key< afw::table::Array< Scalar > > | ArrayKey |
typedef std::vector< boost::shared_ptr< Model > > | ModelVector |
Functions | |
void | solveTrustRegion (ndarray::Array< Scalar, 1, 1 > const &x, ndarray::Array< Scalar const, 2, 1 > const &F, ndarray::Array< Scalar const, 1, 1 > const &g, double r, double tolerance) |
Solve a symmetric quadratic matrix equation with a ball constraint. More... | |
typedef Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic> lsst::meas::modelfit::Matrix |
typedef std::vector<boost::shared_ptr< Model > > lsst::meas::modelfit::ModelVector |
typedef float lsst::meas::modelfit::Pixel |
Typedefs to be used for pixel values.
typedef double lsst::meas::modelfit::Scalar |
typedef Eigen::Matrix<Scalar,Eigen::Dynamic,1> lsst::meas::modelfit::Vector |
void lsst::meas::modelfit::solveTrustRegion | ( | ndarray::Array< Scalar, 1, 1 > const & | x, |
ndarray::Array< Scalar const, 2, 1 > const & | F, | ||
ndarray::Array< Scalar const, 1, 1 > const & | g, | ||
double | r, | ||
double | tolerance | ||
) |
Solve a symmetric quadratic matrix equation with a ball constraint.
This computes a near-exact solution to the "trust region subproblem" necessary in trust-region-based nonlinear optimizers:
\[ \min_x{\quad g^T x + \frac{1}{2}x^T F x}\quad\quad\quad \text{s.t.} ||x|| \le r \]
The tolerance parameter sets how close to \(r\) we require the norm of the solution to be when it lies on the constraint, as a fraction of \(r\) itself.
This implementation is based on the algorithm described in Section 4.3 of "Nonlinear Optimization" by Nocedal and Wright.