LSST Applications  21.0.0-147-g0e635eb1+1acddb5be5,22.0.0+052faf71bd,22.0.0+1ea9a8b2b2,22.0.0+6312710a6c,22.0.0+729191ecac,22.0.0+7589c3a021,22.0.0+9f079a9461,22.0.1-1-g7d6de66+b8044ec9de,22.0.1-1-g87000a6+536b1ee016,22.0.1-1-g8e32f31+6312710a6c,22.0.1-10-gd060f87+016f7cdc03,22.0.1-12-g9c3108e+df145f6f68,22.0.1-16-g314fa6d+c825727ab8,22.0.1-19-g93a5c75+d23f2fb6d8,22.0.1-19-gb93eaa13+aab3ef7709,22.0.1-2-g8ef0a89+b8044ec9de,22.0.1-2-g92698f7+9f079a9461,22.0.1-2-ga9b0f51+052faf71bd,22.0.1-2-gac51dbf+052faf71bd,22.0.1-2-gb66926d+6312710a6c,22.0.1-2-gcb770ba+09e3807989,22.0.1-20-g32debb5+b8044ec9de,22.0.1-23-gc2439a9a+fb0756638e,22.0.1-3-g496fd5d+09117f784f,22.0.1-3-g59f966b+1e6ba2c031,22.0.1-3-g849a1b8+f8b568069f,22.0.1-3-gaaec9c0+c5c846a8b1,22.0.1-32-g5ddfab5d3+60ce4897b0,22.0.1-4-g037fbe1+64e601228d,22.0.1-4-g8623105+b8044ec9de,22.0.1-5-g096abc9+d18c45d440,22.0.1-5-g15c806e+57f5c03693,22.0.1-7-gba73697+57f5c03693,master-g6e05de7fdc+c1283a92b8,master-g72cdda8301+729191ecac,w.2021.39
LSST Data Management Base Package
Matrix3d.h
Go to the documentation of this file.
1 /*
2  * LSST Data Management System
3  * Copyright 2014-2015 AURA/LSST.
4  *
5  * This product includes software developed by the
6  * LSST Project (http://www.lsst.org/).
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the LSST License Statement and
19  * the GNU General Public License along with this program. If not,
20  * see <https://www.lsstcorp.org/LegalNotices/>.
21  */
22 
23 #ifndef LSST_SPHGEOM_MATRIX3D_H_
24 #define LSST_SPHGEOM_MATRIX3D_H_
25 
28 
29 #include <iosfwd>
30 
31 #include "Vector3d.h"
32 
33 
34 namespace lsst {
35 namespace sphgeom {
36 
38 class Matrix3d {
39 public:
41  Matrix3d() {}
42 
45  Matrix3d(double m00, double m01, double m02,
46  double m10, double m11, double m12,
47  double m20, double m21, double m22)
48  {
49  _c[0] = Vector3d(m00, m10, m20);
50  _c[1] = Vector3d(m01, m11, m21);
51  _c[2] = Vector3d(m02, m12, m22);
52  }
53 
56  explicit Matrix3d(Vector3d const & v) {
57  _c[0] = Vector3d(v.x(), 0.0, 0.0);
58  _c[1] = Vector3d(0.0, v.y(), 0.0);
59  _c[2] = Vector3d(0.0, 0.0, v.z());
60  }
61 
63  explicit Matrix3d(double s) {
64  _c[0] = Vector3d(s, 0.0, 0.0);
65  _c[1] = Vector3d(0.0, s, 0.0);
66  _c[2] = Vector3d(0.0, 0.0, s);
67  }
68 
69  bool operator==(Matrix3d const & m) const {
70  return _c[0] == m._c[0] &&
71  _c[1] == m._c[1] &&
72  _c[2] == m._c[2];
73  }
74 
75  bool operator!=(Matrix3d const & m) const {
76  return _c[0] != m._c[0] ||
77  _c[1] != m._c[1] ||
78  _c[2] != m._c[2];
79  }
80 
82  Vector3d getRow(int r) const {
83  return Vector3d(getColumn(0)(r), getColumn(1)(r), getColumn(2)(r));
84  }
85 
87  Vector3d const & getColumn(int c) const { return _c[c]; }
88 
91  double operator()(int r, int c) const { return getColumn(c)(r); }
92 
94  double inner(Matrix3d const & m) const {
95  Matrix3d p = cwiseProduct(m);
96  Vector3d sum = p._c[0] + p._c[1] + p._c[2];
97  return sum(0) + sum(1) + sum(2);
98  }
99 
102  double getSquaredNorm() const { return inner(*this); }
103 
105  double getNorm() const { return std::sqrt(getSquaredNorm()); }
106 
109  Vector3d operator*(Vector3d const & v) const {
110  return Vector3d(_c[0] * v(0) + _c[1] * v(1) + _c[2] * v(2));
111  }
112 
115  Matrix3d operator*(Matrix3d const & m) const {
116  Matrix3d r;
117  for (int i = 0; i < 3; ++i) { r._c[i] = this->operator*(m._c[i]); }
118  return r;
119  }
120 
122  Matrix3d operator+(Matrix3d const & m) const {
123  Matrix3d r;
124  for (int i = 0; i < 3; ++i) { r._c[i] = _c[i] + m._c[i]; }
125  return r;
126  }
127 
129  Matrix3d operator-(Matrix3d const & m) const {
130  Matrix3d r;
131  for (int i = 0; i < 3; ++i) { r._c[i] = _c[i] - m._c[i]; }
132  return r;
133  }
134 
136  Matrix3d cwiseProduct(Matrix3d const & m) const {
137  Matrix3d r;
138  for (int i = 0; i < 3; ++i) { r._c[i] = _c[i].cwiseProduct(m._c[i]); }
139  return r;
140  }
141 
143  Matrix3d transpose() const {
144  Matrix3d t;
145  t._c[0] = Vector3d(_c[0].x(), _c[1].x(), _c[2].x());
146  t._c[1] = Vector3d(_c[0].y(), _c[1].y(), _c[2].y());
147  t._c[2] = Vector3d(_c[0].z(), _c[1].z(), _c[2].z());
148  return t;
149  }
150 
152  Matrix3d inverse() const {
153  Matrix3d inv;
154  Matrix3d const & m = *this;
155  // Find the first column of Adj(m), the adjugate matrix of m.
156  Vector3d a0(m(1, 1) * m(2, 2) - m(2, 1) * m(1, 2),
157  m(1, 2) * m(2, 0) - m(2, 2) * m(1, 0),
158  m(1, 0) * m(2, 1) - m(2, 0) * m(1, 1));
159  // Find 1.0/det(m), where the determinant of m is the dot product of
160  // the first row of m with the first column of Adj(m).
161  double rdet = 1.0 / (a0(0) * m(0,0) + a0(1) * m(0,1) + a0(2) * m(0,2));
162  // The inverse of m is Adj(m)/det(m); compute it column by column.
163  inv._c[0] = a0 * rdet;
164  inv._c[1] = Vector3d((m(0, 2) * m(2, 1) - m(2, 2) * m(0, 1)) * rdet,
165  (m(0, 0) * m(2, 2) - m(2, 0) * m(0, 2)) * rdet,
166  (m(0, 1) * m(2, 0) - m(2, 1) * m(0, 0)) * rdet);
167  inv._c[2] = Vector3d((m(0, 1) * m(1, 2) - m(1, 1) * m(0, 2)) * rdet,
168  (m(0, 2) * m(1, 0) - m(1, 2) * m(0, 0)) * rdet,
169  (m(0, 0) * m(1, 1) - m(1, 0) * m(0, 1)) * rdet);
170  return inv;
171  }
172 
173 private:
174  Vector3d _c[3];
175 };
176 
177 std::ostream & operator<<(std::ostream &, Matrix3d const &);
178 
179 }} // namespace lsst::sphgeom
180 
181 #endif // LSST_SPHGEOM_MATRIX3D_H_
double x
double z
Definition: Match.cc:44
int y
Definition: SpanSet.cc:48
int m
Definition: SpanSet.cc:48
This file declares a class for representing vectors in ℝ³.
A 3x3 matrix with real entries stored in double precision.
Definition: Matrix3d.h:38
Vector3d getRow(int r) const
getRow returns the r-th matrix row. Bounds are not checked.
Definition: Matrix3d.h:82
Matrix3d inverse() const
inverse returns the inverse of this matrix.
Definition: Matrix3d.h:152
bool operator!=(Matrix3d const &m) const
Definition: Matrix3d.h:75
Matrix3d operator+(Matrix3d const &m) const
The addition operator returns the sum of this matrix and m.
Definition: Matrix3d.h:122
Matrix3d(Vector3d const &v)
This constructor creates a diagonal matrix with diagonal components set to the components of v.
Definition: Matrix3d.h:56
bool operator==(Matrix3d const &m) const
Definition: Matrix3d.h:69
Vector3d const & getColumn(int c) const
getColumn returns the c-th matrix column. Bounds are not checked.
Definition: Matrix3d.h:87
Matrix3d()
This constructor creates a zero matrix.
Definition: Matrix3d.h:41
Matrix3d(double s)
This constructor returns the identity matrix scaled by s.
Definition: Matrix3d.h:63
double operator()(int r, int c) const
The function call operator returns the scalar at row r and column c.
Definition: Matrix3d.h:91
double getNorm() const
getNorm returns the L2 (Frobenius) norm of this matrix.
Definition: Matrix3d.h:105
double inner(Matrix3d const &m) const
inner returns the Frobenius inner product of this matrix with m.
Definition: Matrix3d.h:94
Matrix3d(double m00, double m01, double m02, double m10, double m11, double m12, double m20, double m21, double m22)
This constructor creates a matrix from its components, where mij specifies the component for row i an...
Definition: Matrix3d.h:45
Vector3d operator*(Vector3d const &v) const
The multiplication operator returns the product of this matrix with vector v.
Definition: Matrix3d.h:109
Matrix3d transpose() const
transpose returns the transpose of this matrix.
Definition: Matrix3d.h:143
Matrix3d cwiseProduct(Matrix3d const &m) const
cwiseProduct returns the component-wise product of this matrix and m.
Definition: Matrix3d.h:136
Matrix3d operator-(Matrix3d const &m) const
The subtraction operator returns the difference between this matrix and m.
Definition: Matrix3d.h:129
double getSquaredNorm() const
getSquaredNorm returns the Frobenius inner product of this matrix with itself.
Definition: Matrix3d.h:102
Matrix3d operator*(Matrix3d const &m) const
The multiplication operator returns the product of this matrix with matrix m.
Definition: Matrix3d.h:115
Vector3d is a vector in ℝ³ with components stored in double precision.
Definition: Vector3d.h:44
Vector3d cwiseProduct(Vector3d const &v) const
cwiseProduct returns the component-wise product of this vector and v.
Definition: Vector3d.h:150
double x() const
Definition: Vector3d.h:66
double y() const
Definition: Vector3d.h:68
double z() const
Definition: Vector3d.h:70
std::ostream & operator<<(std::ostream &, Angle const &)
Definition: Angle.cc:34
A base class for image defects.
T sqrt(T... args)