LSST Applications  21.0.0-147-g0e635eb1+1acddb5be5,22.0.0+052faf71bd,22.0.0+1ea9a8b2b2,22.0.0+6312710a6c,22.0.0+729191ecac,22.0.0+7589c3a021,22.0.0+9f079a9461,22.0.1-1-g7d6de66+b8044ec9de,22.0.1-1-g87000a6+536b1ee016,22.0.1-1-g8e32f31+6312710a6c,22.0.1-10-gd060f87+016f7cdc03,22.0.1-12-g9c3108e+df145f6f68,22.0.1-16-g314fa6d+c825727ab8,22.0.1-19-g93a5c75+d23f2fb6d8,22.0.1-19-gb93eaa13+aab3ef7709,22.0.1-2-g8ef0a89+b8044ec9de,22.0.1-2-g92698f7+9f079a9461,22.0.1-2-ga9b0f51+052faf71bd,22.0.1-2-gac51dbf+052faf71bd,22.0.1-2-gb66926d+6312710a6c,22.0.1-2-gcb770ba+09e3807989,22.0.1-20-g32debb5+b8044ec9de,22.0.1-23-gc2439a9a+fb0756638e,22.0.1-3-g496fd5d+09117f784f,22.0.1-3-g59f966b+1e6ba2c031,22.0.1-3-g849a1b8+f8b568069f,22.0.1-3-gaaec9c0+c5c846a8b1,22.0.1-32-g5ddfab5d3+60ce4897b0,22.0.1-4-g037fbe1+64e601228d,22.0.1-4-g8623105+b8044ec9de,22.0.1-5-g096abc9+d18c45d440,22.0.1-5-g15c806e+57f5c03693,22.0.1-7-gba73697+57f5c03693,master-g6e05de7fdc+c1283a92b8,master-g72cdda8301+729191ecac,w.2021.39
LSST Data Management Base Package
Prior.h
Go to the documentation of this file.
1 // -*- lsst-c++ -*-
2 /*
3  * LSST Data Management System
4  * Copyright 2008-2013 LSST Corporation.
5  *
6  * This product includes software developed by the
7  * LSST Project (http://www.lsst.org/).
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the LSST License Statement and
20  * the GNU General Public License along with this program. If not,
21  * see <http://www.lsstcorp.org/LegalNotices/>.
22  */
23 
24 #ifndef LSST_MEAS_MODELFIT_Prior_h_INCLUDED
25 #define LSST_MEAS_MODELFIT_Prior_h_INCLUDED
26 
27 #include "lsst/base.h"
28 #include "lsst/afw/math/Random.h"
30 
31 namespace lsst { namespace meas { namespace modelfit {
32 
36 class Prior {
37 public:
38 
39  std::string const & getTag() const { return _tag; }
40 
47  virtual Scalar evaluate(
48  ndarray::Array<Scalar const,1,1> const & nonlinear,
49  ndarray::Array<Scalar const,1,1> const & amplitudes
50  ) const = 0;
51 
67  virtual void evaluateDerivatives(
68  ndarray::Array<Scalar const,1,1> const & nonlinear,
69  ndarray::Array<Scalar const,1,1> const & amplitudes,
70  ndarray::Array<Scalar,1,1> const & nonlinearGradient,
71  ndarray::Array<Scalar,1,1> const & amplitudeGradient,
72  ndarray::Array<Scalar,2,1> const & nonlinearHessian,
73  ndarray::Array<Scalar,2,1> const & amplitudeHessian,
74  ndarray::Array<Scalar,2,1> const & crossHessian
75  ) const = 0;
76 
111  Vector const & gradient, Matrix const & hessian,
112  ndarray::Array<Scalar const,1,1> const & nonlinear
113  ) const = 0;
114 
127  virtual Scalar maximize(
128  Vector const & gradient, Matrix const & hessian,
129  ndarray::Array<Scalar const,1,1> const & nonlinear,
130  ndarray::Array<Scalar,1,1> const & amplitudes
131  ) const = 0;
132 
152  virtual void drawAmplitudes(
153  Vector const & gradient, Matrix const & hessian,
154  ndarray::Array<Scalar const,1,1> const & nonlinear,
155  afw::math::Random & rng,
156  ndarray::Array<Scalar,2,1> const & amplitudes,
157  ndarray::Array<Scalar,1,1> const & weights,
158  bool multiplyWeights=false
159  ) const = 0;
160 
161  virtual ~Prior() {}
162 
163  // No copying
164  Prior (const Prior&) = delete;
165  Prior& operator=(const Prior&) = delete;
166 
167  // No moving
168  Prior (Prior&&) = delete;
169  Prior& operator=(Prior&&) = delete;
170 
171 protected:
172 
173  explicit Prior(std::string const & tag="") : _tag(tag) {}
174 
175 private:
176  std::string _tag;
177 };
178 
179 }}} // namespace lsst::meas::modelfit
180 
181 #endif // !LSST_MEAS_MODELFIT_Prior_h_INCLUDED
table::Key< table::Array< double > > amplitudes
Basic LSST definitions.
A class that can be used to generate sequences of random numbers according to a number of different a...
Definition: Random.h:57
Base class for Bayesian priors.
Definition: Prior.h:36
virtual Scalar marginalize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear) const =0
Return the -log amplitude integral of the prior*likelihood product.
virtual Scalar maximize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar, 1, 1 > const &amplitudes) const =0
Compute the amplitude vector that maximizes the prior x likelihood product.
std::string const & getTag() const
Definition: Prior.h:39
Prior & operator=(const Prior &)=delete
Prior & operator=(Prior &&)=delete
virtual Scalar evaluate(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes) const =0
Evaluate the prior at the given point in nonlinear and amplitude space.
virtual void drawAmplitudes(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, afw::math::Random &rng, ndarray::Array< Scalar, 2, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &weights, bool multiplyWeights=false) const =0
Draw a set of Monte Carlo amplitude vectors.
virtual void evaluateDerivatives(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &nonlinearGradient, ndarray::Array< Scalar, 1, 1 > const &amplitudeGradient, ndarray::Array< Scalar, 2, 1 > const &nonlinearHessian, ndarray::Array< Scalar, 2, 1 > const &amplitudeHessian, ndarray::Array< Scalar, 2, 1 > const &crossHessian) const =0
Evaluate the derivatives of the prior at the given point in nonlinear and amplitude space.
Prior(const Prior &)=delete
Prior(std::string const &tag="")
Definition: Prior.h:173
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
Definition: common.h:46
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > Matrix
Definition: common.h:45
double Scalar
Typedefs to be used for probability and parameter values.
Definition: common.h:44
A base class for image defects.