LSST Applications  21.0.0-147-g0e635eb1+1acddb5be5,22.0.0+052faf71bd,22.0.0+1ea9a8b2b2,22.0.0+6312710a6c,22.0.0+729191ecac,22.0.0+7589c3a021,22.0.0+9f079a9461,22.0.1-1-g7d6de66+b8044ec9de,22.0.1-1-g87000a6+536b1ee016,22.0.1-1-g8e32f31+6312710a6c,22.0.1-10-gd060f87+016f7cdc03,22.0.1-12-g9c3108e+df145f6f68,22.0.1-16-g314fa6d+c825727ab8,22.0.1-19-g93a5c75+d23f2fb6d8,22.0.1-19-gb93eaa13+aab3ef7709,22.0.1-2-g8ef0a89+b8044ec9de,22.0.1-2-g92698f7+9f079a9461,22.0.1-2-ga9b0f51+052faf71bd,22.0.1-2-gac51dbf+052faf71bd,22.0.1-2-gb66926d+6312710a6c,22.0.1-2-gcb770ba+09e3807989,22.0.1-20-g32debb5+b8044ec9de,22.0.1-23-gc2439a9a+fb0756638e,22.0.1-3-g496fd5d+09117f784f,22.0.1-3-g59f966b+1e6ba2c031,22.0.1-3-g849a1b8+f8b568069f,22.0.1-3-gaaec9c0+c5c846a8b1,22.0.1-32-g5ddfab5d3+60ce4897b0,22.0.1-4-g037fbe1+64e601228d,22.0.1-4-g8623105+b8044ec9de,22.0.1-5-g096abc9+d18c45d440,22.0.1-5-g15c806e+57f5c03693,22.0.1-7-gba73697+57f5c03693,master-g6e05de7fdc+c1283a92b8,master-g72cdda8301+729191ecac,w.2021.39
LSST Data Management Base Package
fit_multiband.py
Go to the documentation of this file.
1 # This file is part of pipe_tasks.
2 #
3 # Developed for the LSST Data Management System.
4 # This product includes software developed by the LSST Project
5 # (https://www.lsst.org).
6 # See the COPYRIGHT file at the top-level directory of this distribution
7 # for details of code ownership.
8 #
9 # This program is free software: you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation, either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <https://www.gnu.org/licenses/>.
21 
22 __all__ = [
23  "CatalogExposure", "MultibandFitConfig", "MultibandFitSubConfig", "MultibandFitSubTask",
24  "MultibandFitTask",
25 ]
26 
27 from abc import ABC, abstractmethod
28 from dataclasses import dataclass, field
29 import lsst.afw.image as afwImage
30 import lsst.afw.table as afwTable
31 import lsst.daf.butler as dafButler
32 from lsst.obs.base import ExposureIdInfo
33 import lsst.pex.config as pexConfig
34 import lsst.pipe.base as pipeBase
35 import lsst.pipe.base.connectionTypes as cT
36 from typing import Dict, Iterable, List, Optional, Set
37 
38 
39 @dataclass(frozen=True)
41  """A class to store a catalog, exposure, and metadata for a given dataId.
42 
43  This class is intended to store an exposure and an associated measurement
44  catalog. There are no checks to ensure this, so repurpose responsibly.
45  """
46  @property
47  def band(self) -> str:
48  return self.dataId['band']
49 
50  @property
51  def calib(self) -> Optional[afwImage.PhotoCalib]:
52  return None if self.exposure is None else self.exposure.getPhotoCalib()
53 
54  catalog: Optional[afwTable.SourceCatalog]
55  exposure: Optional[afwImage.Exposure]
56  dataId: dafButler.DataCoordinate
57  id_tract_patch: Optional[int] = 0
58  metadata: Dict = field(default_factory=dict)
59 
60  def __post_init__(self):
61  if 'band' not in self.dataId:
62  raise ValueError(f'dataId={self.dataId} must have a band')
63 
64 
65 multibandFitBaseTemplates = {
66  "name_input_coadd": "deep",
67  "name_output_coadd": "deep",
68  "name_output_cat": "fit",
69 }
70 
71 
73  pipeBase.PipelineTaskConnections,
74  dimensions=("tract", "patch", "skymap"),
75  defaultTemplates=multibandFitBaseTemplates,
76 ):
77  cat_ref = cT.Input(
78  doc="Reference multiband source catalog",
79  name="{name_input_coadd}Coadd_ref",
80  storageClass="SourceCatalog",
81  dimensions=("tract", "patch", "skymap"),
82  )
83  cats_meas = cT.Input(
84  doc="Deblended single-band source catalogs",
85  name="{name_input_coadd}Coadd_meas",
86  storageClass="SourceCatalog",
87  multiple=True,
88  dimensions=("tract", "patch", "band", "skymap"),
89  )
90  coadds = cT.Input(
91  doc="Exposures on which to run fits",
92  name="{name_input_coadd}Coadd_calexp",
93  storageClass="ExposureF",
94  multiple=True,
95  dimensions=("tract", "patch", "band", "skymap"),
96  )
97  cat_output = cT.Output(
98  doc="Measurement multi-band catalog",
99  name="{name_output_coadd}Coadd_{name_output_cat}",
100  storageClass="SourceCatalog",
101  dimensions=("tract", "patch", "skymap"),
102  )
103  cat_ref_schema = cT.InitInput(
104  doc="Schema associated with a ref source catalog",
105  storageClass="SourceCatalog",
106  name="{name_input_coadd}Coadd_ref_schema",
107  )
108  cat_output_schema = cT.InitOutput(
109  doc="Output of the schema used in deblending task",
110  name="{name_output_coadd}Coadd_{name_output_cat}_schema",
111  storageClass="SourceCatalog"
112  )
113 
114  def adjustQuantum(self, inputs, outputs, label, data_id):
115  """Validates the `lsst.daf.butler.DatasetRef` bands against the
116  subtask's list of bands to fit and drops unnecessary bands.
117 
118  Parameters
119  ----------
120  inputs : `dict`
121  Dictionary whose keys are an input (regular or prerequisite)
122  connection name and whose values are a tuple of the connection
123  instance and a collection of associated `DatasetRef` objects.
124  The exact type of the nested collections is unspecified; it can be
125  assumed to be multi-pass iterable and support `len` and ``in``, but
126  it should not be mutated in place. In contrast, the outer
127  dictionaries are guaranteed to be temporary copies that are true
128  `dict` instances, and hence may be modified and even returned; this
129  is especially useful for delegating to `super` (see notes below).
130  outputs : `Mapping`
131  Mapping of output datasets, with the same structure as ``inputs``.
132  label : `str`
133  Label for this task in the pipeline (should be used in all
134  diagnostic messages).
135  data_id : `lsst.daf.butler.DataCoordinate`
136  Data ID for this quantum in the pipeline (should be used in all
137  diagnostic messages).
138 
139  Returns
140  -------
141  adjusted_inputs : `Mapping`
142  Mapping of the same form as ``inputs`` with updated containers of
143  input `DatasetRef` objects. All inputs involving the 'band'
144  dimension are adjusted to put them in consistent order and remove
145  unneeded bands.
146  adjusted_outputs : `Mapping`
147  Mapping of updated output datasets; always empty for this task.
148 
149  Raises
150  ------
151  lsst.pipe.base.NoWorkFound
152  Raised if there are not enough of the right bands to run the task
153  on this quantum.
154  """
155  # Check which bands are going to be fit
156  bands_fit, bands_read_only = self.config.get_band_sets()
157  bands_needed = bands_fit.union(bands_read_only)
158 
159  adjusted_inputs = {}
160  for connection_name, (connection, dataset_refs) in inputs.items():
161  # Datasets without bands in their dimensions should be fine
162  if 'band' in connection.dimensions:
163  datasets_by_band = {dref.dataId['band']: dref for dref in dataset_refs}
164  if not bands_needed.issubset(datasets_by_band.keys()):
165  raise pipeBase.NoWorkFound(
166  f'DatasetRefs={dataset_refs} have data with bands in the'
167  f' set={set(datasets_by_band.keys())},'
168  f' which is not a superset of the required bands={bands_needed} defined by'
169  f' {self.config.__class__}.fit_multiband='
170  f'{self.config.fit_multiband._value.__class__}\'s attributes'
171  f' bands_fit={bands_fit} and bands_read_only()={bands_read_only}.'
172  f' Add the required bands={bands_needed.difference(datasets_by_band.keys())}.'
173  )
174  # Adjust all datasets with band dimensions to include just
175  # the needed bands, in consistent order.
176  adjusted_inputs[connection_name] = (
177  connection,
178  [datasets_by_band[band] for band in bands_needed]
179  )
180 
181  # Delegate to super for more checks.
182  inputs.update(adjusted_inputs)
183  super().adjustQuantum(inputs, outputs, label, data_id)
184  return adjusted_inputs, {}
185 
186 
187 class MultibandFitSubConfig(pexConfig.Config):
188  """Config class for the MultibandFitTask to define methods returning
189  values that depend on multiple config settings.
190 
191  """
192  def bands_read_only(self) -> Set:
193  """Return the set of bands that the Task needs to read (e.g. for
194  defining priors) but not necessarily fit.
195 
196  Returns
197  -------
198  The set of such bands.
199  """
200  return set()
201 
202 
203 class MultibandFitSubTask(pipeBase.Task, ABC):
204  """An abstract interface for subtasks of MultibandFitTask to perform
205  multiband fitting of deblended sources.
206 
207  Parameters
208  ----------
209  schema : `lsst.afw.table.Schema`
210  The input schema for the reference source catalog, used to initialize
211  the output schema.
212  **kwargs
213  Additional arguments to be passed to the `lsst.pipe.base.Task`
214  constructor.
215  """
216  ConfigClass = MultibandFitSubConfig
217 
218  def __init__(self, schema: afwTable.Schema, **kwargs):
219  super().__init__(**kwargs)
220 
221  @abstractmethod
222  def run(
223  self, catexps: Iterable[CatalogExposure], cat_ref: afwTable.SourceCatalog
224  ) -> pipeBase.Struct:
225  """Fit sources from a reference catalog using data from multiple
226  exposures in the same patch.
227 
228  Parameters
229  ----------
230  catexps : `typing.List [CatalogExposure]`
231  A list of catalog-exposure pairs in a given band.
232  cat_ref : `lsst.afw.table.SourceCatalog`
233  A reference source catalog to fit.
234 
235  Returns
236  -------
237  retStruct : `lsst.pipe.base.Struct`
238  A struct with a cat_output attribute containing the output
239  measurement catalog.
240 
241  Notes
242  -----
243  Subclasses may have further requirements on the input parameters,
244  including:
245  - Passing only one catexp per band;
246  - Catalogs containing HeavyFootprints with deblended images;
247  - Fitting only a subset of the sources.
248  If any requirements are not met, the subtask should fail as soon as
249  possible.
250  """
251  raise NotImplementedError()
252 
253  @property
254  @abstractmethod
255  def schema(self) -> afwTable.Schema:
256  raise NotImplementedError()
257 
258 
260  pipeBase.PipelineTaskConfig,
261  pipelineConnections=MultibandFitConnections,
262 ):
263  """Configure a MultibandFitTask, including a configurable fitting subtask.
264  """
265  fit_multiband = pexConfig.ConfigurableField(
266  target=MultibandFitSubTask,
267  doc="Task to fit sources using multiple bands",
268  )
269 
270  def get_band_sets(self):
271  """Get the set of bands required by the fit_multiband subtask.
272 
273  Returns
274  -------
275  bands_fit : `set`
276  The set of bands that the subtask will fit.
277  bands_read_only : `set`
278  The set of bands that the subtask will only read data
279  (measurement catalog and exposure) for.
280  """
281  try:
282  bands_fit = self.fit_multibandfit_multiband.bands_fit
283  except AttributeError:
284  raise RuntimeError(f'{__class__}.fit_multiband must have bands_fit attribute') from None
285  bands_read_only = self.fit_multibandfit_multiband.bands_read_only()
286  return set(bands_fit), set(bands_read_only)
287 
288 
289 class MultibandFitTask(pipeBase.PipelineTask):
290  """Fit deblended exposures in multiple bands simultaneously.
291 
292  It is generally assumed but not enforced (except optionally by the
293  configurable `fit_multiband` subtask) that there is only one exposure
294  per band, presumably a coadd.
295  """
296  ConfigClass = MultibandFitConfig
297  _DefaultName = "multibandFit"
298 
299  def __init__(self, initInputs, **kwargs):
300  super().__init__(initInputs=initInputs, **kwargs)
301  self.makeSubtask("fit_multiband", schema=initInputs["cat_ref_schema"].schema)
302  self.cat_output_schemacat_output_schema = afwTable.SourceCatalog(self.fit_multiband.schema)
303 
304  def runQuantum(self, butlerQC, inputRefs, outputRefs):
305  inputs = butlerQC.get(inputRefs)
306  id_tp = ExposureIdInfo.fromDataId(butlerQC.quantum.dataId, "tract_patch").expId
307  input_refs_objs = [(inputRefs.cats_meas, inputs['cats_meas']), (inputRefs.coadds, inputs['coadds'])]
308  cats, exps = [
309  {dRef.dataId: obj for dRef, obj in zip(refs, objs)}
310  for refs, objs in input_refs_objs
311  ]
312  dataIds = set(cats).union(set(exps))
313  catexps = [
315  catalog=cats.get(dataId), exposure=exps.get(dataId), dataId=dataId, id_tract_patch=id_tp,
316  )
317  for dataId in dataIds
318  ]
319  outputs = self.runrun(catexps=catexps, cat_ref=inputs['cat_ref'])
320  butlerQC.put(outputs, outputRefs)
321  # Validate the output catalog's schema and raise if inconsistent (after output to allow debugging)
322  if outputs.cat_output.schema != self.cat_output_schemacat_output_schema.schema:
323  raise RuntimeError(f'{__class__}.config.fit_multiband.run schema != initOutput schema:'
324  f' {outputs.cat_output.schema} vs {self.cat_output_schema.schema}')
325 
326  def run(self, catexps: List[CatalogExposure], cat_ref: afwTable.SourceCatalog) -> pipeBase.Struct:
327  """Fit sources from a reference catalog using data from multiple
328  exposures in the same region (patch).
329 
330  Parameters
331  ----------
332  catexps : `typing.List [CatalogExposure]`
333  A list of catalog-exposure pairs in a given band.
334  cat_ref : `lsst.afw.table.SourceCatalog`
335  A reference source catalog to fit.
336 
337  Returns
338  -------
339  retStruct : `lsst.pipe.base.Struct`
340  A struct with a cat_output attribute containing the output
341  measurement catalog.
342 
343  Notes
344  -----
345  Subtasks may have further requirements; see `MultibandFitSubTask.run`.
346  """
347  cat_output = self.fit_multiband.run(catexps, cat_ref).output
348  retStruct = pipeBase.Struct(cat_output=cat_output)
349  return retStruct
A class to contain the data, WCS, and other information needed to describe an image of the sky.
Definition: Exposure.h:72
Optional[afwImage.PhotoCalib] calib(self)
def adjustQuantum(self, inputs, outputs, label, data_id)
pipeBase.Struct run(self, Iterable[CatalogExposure] catexps, afwTable.SourceCatalog cat_ref)
def __init__(self, afwTable.Schema schema, **kwargs)
pipeBase.Struct run(self, List[CatalogExposure] catexps, afwTable.SourceCatalog cat_ref)
def runQuantum(self, butlerQC, inputRefs, outputRefs)
def __init__(self, initInputs, **kwargs)
daf::base::PropertySet * set
Definition: fits.cc:912
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects.