LSST Applications 26.0.0,g0265f82a02+6660c170cc,g07994bdeae+30b05a742e,g0a0026dc87+17526d298f,g0a60f58ba1+17526d298f,g0e4bf8285c+96dd2c2ea9,g0ecae5effc+c266a536c8,g1e7d6db67d+6f7cb1f4bb,g26482f50c6+6346c0633c,g2bbee38e9b+6660c170cc,g2cc88a2952+0a4e78cd49,g3273194fdb+f6908454ef,g337abbeb29+6660c170cc,g337c41fc51+9a8f8f0815,g37c6e7c3d5+7bbafe9d37,g44018dc512+6660c170cc,g4a941329ef+4f7594a38e,g4c90b7bd52+5145c320d2,g58be5f913a+bea990ba40,g635b316a6c+8d6b3a3e56,g67924a670a+bfead8c487,g6ae5381d9b+81bc2a20b4,g93c4d6e787+26b17396bd,g98cecbdb62+ed2cb6d659,g98ffbb4407+81bc2a20b4,g9ddcbc5298+7f7571301f,ga1e77700b3+99e9273977,gae46bcf261+6660c170cc,gb2715bf1a1+17526d298f,gc86a011abf+17526d298f,gcf0d15dbbd+96dd2c2ea9,gdaeeff99f8+0d8dbea60f,gdb4ec4c597+6660c170cc,ge23793e450+96dd2c2ea9,gf041782ebf+171108ac67
LSST Data Management Base Package
Loading...
Searching...
No Matches
_leastSquares.cc
Go to the documentation of this file.
1/*
2 * LSST Data Management System
3 * Copyright 2008-2016 AURA/LSST.
4 *
5 * This product includes software developed by the
6 * LSST Project (http://www.lsst.org/).
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the LSST License Statement and
19 * the GNU General Public License along with this program. If not,
20 * see <https://www.lsstcorp.org/LegalNotices/>.
21 */
22
23#include <pybind11/pybind11.h>
24#include <lsst/utils/python.h>
25
26#include "ndarray/pybind11.h"
27
29
30namespace py = pybind11;
31using namespace pybind11::literals;
32
33using namespace lsst::afw::math;
34namespace lsst {
35namespace afw {
36namespace math {
37namespace {
38template <typename T1, typename T2, int C1, int C2>
39void declareLeastSquares(lsst::utils::python::WrapperCollection &wrappers) {
40 auto clsLeastSquares = wrappers.wrapType(
41 py::class_<LeastSquares>(wrappers.module, "LeastSquares"), [](auto &mod, auto &cls) {
42 cls.def_static(
43 "fromDesignMatrix",
44 (LeastSquares(*)(ndarray::Array<T1, 2, C1> const &, ndarray::Array<T2, 1, C2> const &,
45 LeastSquares::Factorization)) &
46 LeastSquares::fromDesignMatrix<T1, T2, C1, C2>,
47 "design"_a, "data"_a, "factorization"_a = LeastSquares::NORMAL_EIGENSYSTEM);
48 cls.def_static(
49 "fromNormalEquations",
50 (LeastSquares(*)(ndarray::Array<T1, 2, C1> const &, ndarray::Array<T2, 1, C2> const &,
51 LeastSquares::Factorization)) &
52 LeastSquares::fromNormalEquations<T1, T2, C1, C2>,
53 "fisher"_a, "rhs"_a, "factorization"_a = LeastSquares::NORMAL_EIGENSYSTEM);
54 cls.def("getRank", &LeastSquares::getRank);
55 cls.def("setDesignMatrix", (void (LeastSquares::*)(ndarray::Array<T1, 2, C1> const &,
56 ndarray::Array<T2, 1, C2> const &)) &
57 LeastSquares::setDesignMatrix<T1, T2, C1, C2>);
58 cls.def("getDimension", &LeastSquares::getDimension);
59 cls.def("setNormalEquations", (void (LeastSquares::*)(ndarray::Array<T1, 2, C1> const &,
60 ndarray::Array<T2, 1, C2> const &)) &
61 LeastSquares::setNormalEquations<T1, T2, C1, C2>);
62 cls.def("getSolution", &LeastSquares::getSolution);
63 cls.def("getFisherMatrix", &LeastSquares::getFisherMatrix);
64 cls.def("getCovariance", &LeastSquares::getCovariance);
65 cls.def("getFactorization", &LeastSquares::getFactorization);
66 cls.def("getDiagnostic", &LeastSquares::getDiagnostic);
67 cls.def("getThreshold", &LeastSquares::getThreshold);
68 cls.def("setThreshold", &LeastSquares::setThreshold);
69 });
70 wrappers.wrapType(py::enum_<LeastSquares::Factorization>(clsLeastSquares, "Factorization"),
71 [](auto &mod, auto &enm) {
72 enm.value("NORMAL_EIGENSYSTEM", LeastSquares::Factorization::NORMAL_EIGENSYSTEM);
73 enm.value("NORMAL_CHOLESKY", LeastSquares::Factorization::NORMAL_CHOLESKY);
74 enm.value("DIRECT_SVD", LeastSquares::Factorization::DIRECT_SVD);
75 enm.export_values();
76 });
77};
78} // namespace
79
80void wrapLeastSquares(lsst::utils::python::WrapperCollection &wrappers) {
81 declareLeastSquares<double, double, 0, 0>(wrappers);
82}
83} // namespace math
84} // namespace afw
85} // namespace lsst
@ NORMAL_EIGENSYSTEM
Use the normal equations with a symmetric Eigensystem decomposition.
@ NORMAL_CHOLESKY
Use the normal equations with a Cholesky decomposition.
@ DIRECT_SVD
Use a thin singular value decomposition of the design matrix.
void wrapLeastSquares(lsst::utils::python::WrapperCollection &wrappers)